Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 41(21): 3011-3023, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35459781

RESUMO

Most cases of hepatocellular carcinoma (HCC) arise with the fibrotic microenvironment where hepatic stellate cells (HSCs) and carcinoma-associated fibroblasts (CAFs) are critical components in HCC progression. Therefore, CAF normalization could be a feasible therapy for HCC. Galectin-1 (Gal-1), a ß-galactoside-binding lectin, is critical for HSC activation and liver fibrosis. However, few studies has evaluated the pathological role of Gal-1 in HCC stroma and its role in hepatic CAF is unclear. Here we showed that Gal-1 mainly expressed in HCC stroma, but not cancer cells. High expression of Gal-1 is correlated with CAF markers and poor prognoses of HCC patients. In co-culture systems, targeting Gal-1 in CAFs or HSCs, using small hairpin (sh)RNAs or an therapeutic inhibitor (LLS30), downregulated plasminogen activator inhibitor-2 (PAI-2) production which suppressed cancer stem-like cell properties and invasion ability of HCC in a paracrine manner. The Gal-1-targeting effect was mediated by increased a disintegrin and metalloprotease 17 (ADAM17)-dependent TNF-receptor 1 (TNFR1) shedding/cleavage which inhibited the TNF-α → JNK → c-Jun/ATF2 signaling axis of pro-inflammatory gene transcription. Silencing Gal-1 in CAFs inhibited CAF-augmented HCC progression and reprogrammed the CAF-mediated inflammatory responses in a co-injection xenograft model. Taken together, the findings uncover a crucial role of Gal-1 in CAFs that orchestrates an inflammatory CSC niche supporting HCC progression and demonstrate that targeting Gal-1 could be a potential therapy for fibrosis-related HCC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Galectina 1/genética , Galectina 1/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Estabilidade Proteica , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Microambiente Tumoral
2.
Pharmacognosy Res ; 9(4): 378-383, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263632

RESUMO

BACKGROUND: Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries. Annonacin, a natural pure compound extracted from the seeds of Annona muricata, is a potential alternative therapeutic agent to treat EC. OBJECTIVE: To study the antitumor activity of annonacin and its mechanism of action in EC cells (ECCs). MATERIALS AND METHODS: Viability of ECCs treated with annonacin for 72 h was determined using methyl thiazolyl tetrazolium assay. The induction of cell cycle arrest and apoptotic cell death was evaluated using propidium iodide and annexin V-PE/7-AAD assay, respectively. DNA strand breaks were visualized using transferase dUTP nick end labeling assay, and the effects of annonacin on survival signaling were determined using western blotting. RESULTS: Annonacin exhibited antiproliferative effects on EC cell lines (ECC-1 and HEC-1A) and primary cells (EC6-ept and EC14-ept) with EC50values ranging from 4.62 to 4.92 µg/ml. EC cells were shown arrested at G2/M phase after treated with 4 µg/ml of annonacin for 72 h. This led to a significant increase in apoptotic cell death (65.7%) in these cells when compared to vehicle-treated cells (P < 0.005). We further showed that annonacin-mediated apoptotic cell death was associated with an increase in caspase-3 cleavage and DNA fragmentation. Cell apoptosis was accompanied with downregulation of extracellular signal-regulated kinase survival protein expression and induction of G2/M cell cycle arrest. CONCLUSION: Annonacin may be a potential novel therapeutic agent for EC patients. SUMMARY: We aimed to study the antitumor activity of annonacin and its mechanism of action in endometrial cancer cells. Annonacin exerted antiproliferation effects on both endometrial cancer cell lines and primary cells via induction of apoptosis and inhibition of extracellular signal-regulated kinase. Our data represented that annonacin could be an alternative therapeutic treatment to combat endometrial cancer. Abbreviations Used: 7-AAD: 7-Amino-Actinomycin, ATP: Adenosine diphosphate, BSA: Bovine serum albumin, DNA: Deoxyribonucleic acid, EC: Endometrial cancer, ECC-1: Endometrial cancer cell-1, EC50: Half maximal effective concentration, Ept: Epithelial, FBS: Fetal bovine serum, HEC-1A: Human endometrial carcinoma-1A, MTT: Methyl thiazolyl tetrazolium, NaCl: Sodium chloride, NADH: Nicotinamide adenine dinucleotide, RPMI 1640: Roswell Park Memorial Institute Medium, SDS: Sodium dodecyl sulfate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...