Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(10): 9049-9058, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37171183

RESUMO

The discovery of chiral spin texture has unveiled many unusual yet extraordinary physical phenomena, such as the Néel type domain walls and magnetic skyrmions. A recent theoretical study suggests that a chiral exchange interaction is not limited to a single ferromagnetic layer; instead, three-dimensional spin textures can arise from an interlayer Dzyaloshinskii-Moriya interaction. However, the influence of chiral interlayer exchange coupling on the electrical manipulation of magnetization has rarely been addressed. Here, the coexistence of both symmetric and chiral interlayer exchange coupling between two orthogonally magnetized CoFeB layers in PtMn/CoFeB/W/CoFeB/MgO is demonstrated. Images from polar magneto-optical Kerr effect microscopy indicate that the two types of coupling act concurrently to induce asymmetric domain wall propagation, where the velocities of domain walls with opposite chiralities are substantially different. Based on this microscopic mechanism, field-free switching of the perpendicularly magnetized CoFeB is achieved with a wide range of W thicknesses of 0.6-4.5 nm. This work enriches the understanding of interlayer exchange coupling for spintronic applications.

2.
Nano Lett ; 19(11): 8040-8048, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31560545

RESUMO

Although Si acts as an electrical semiconductor, it has properties of an optical dielectric. Here, we revisit the behavior of Si as a plasmonic metal. This behavior was previously shown to arise from strong interband transitions that lead to negative permittivity of Si across the ultraviolet spectral range. However, few have studied the plasmonic characteristics of Si, particularly in its nanostructures. In this paper, we report localized plasmon resonances of Si nanostructures and the observation of plasmon hybridization in the UV (∼250 nm wavelength). In addition, simulation results show that Si nanodisk dimers can achieve a local intensity enhancement greater than ∼500-fold in a 1 nm gap. Lastly, we investigate hybrid Si-Al nanostructures to achieve sharp resonances in the UV, due to the coupling between plasmon resonances supported by Si and Al nanostructures. These results will have potential applications in the UV range, such as nanostructured devices for spectral filtering, plasmon-enhanced Si photodetectors, interrogation of molecular chirality, and catalysis. It could have significant impact on UV photolithography on patterned Si structures.

3.
Nano Lett ; 17(10): 6267-6272, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898084

RESUMO

Wavefront manipulation in metasurfaces typically relies on phase mapping with a finite number of elements. In particular, a discretized linear phase profile may be used to obtain a beam bending functionality. However, discretization limits the applicability of this approach for high angle bending due to the drastic efficiency drop when the phase is mapped by a small number of elements. In this work, we discuss a novel concept for energy redistribution in diffraction gratings and its application in the visible spectrum range, which helps overcome the constraints of ultrahigh angle (above 80°) beam bending. Arranging asymmetric dielectric nanoantennas into diffractive gratings, we show that one can efficiently redistribute the power between the grating orders at will. This is achieved by precise engineering of the scattering pattern of the nanoantennas. The concept is numerically and experimentally demonstrated at visible frequencies using several designs of TiO2 (titanium dioxide) nanoantennas for medium (∼55°) and high (∼80°) angle light bending. Results show efficient broadband visible-light operation (blue and green range) of transmissive devices, reaching efficiencies of ∼90% and 50%, respectively, at the optimized wavelength. The presented design concept is general and can be applied for both transmission and reflection operation at any desired wavelength and polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...