Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lung Cancer ; 169: 31-39, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609409

RESUMO

INTRODUCTION: Lung cancer remains the most frequent cause of brain metastases (BMs) and is responsible for high morbidity and mortality. Intracranial response to systemic treatments is inconsistent due to several mechanisms: genomic heterogeneity, blood-tumor barrier, and the brain-specific microenvironment. We conducted a study using data from the SAFIR02-LUNG trial. The primary objective was to compare the molecular profiles of non-small-cell lung cancer (NSCLC) with or without BMs. The secondary objective was to explore central nervous system (CNS) outcomes with various maintenance treatment regimens. METHODS: In total, 365 patients harboring interpretable molecular data were included in this analysis. Clinical and biological data were collected. Genomic analyses were based on array-comparative genomic hybridization and next-generation sequencing (NGS) following the trial recommendations. RESULTS: Baseline genomic analyses of copy number variations identified a 24-gene signature specific to lung cancer BM occurrence, all previously known to take part in oncogenesis. NGS analysis identified a higher proportion of KRAS mutations in the BM-positive group (44.3% versus 32.3%), especially G12C mutations (63% versus 47%). Protein interaction analyses highlighted several functional interactions centered on EGFR. Furthermore, the risk of CNS progression was decreased with standard pemetrexed maintenance therapy. The highest rate of CNS progression was observed with durvalumab, probably because of the specific intracranial immune microenvironment. CONCLUSION: This work identified a 24-gene signature specific to lung cancer with BM. Further studies are needed to precisely determine the functional implications of these genes to identify new therapeutic targets for the treatment of lung cancer with BM.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Humanos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Ensaios Clínicos Controlados Aleatórios como Assunto , Microambiente Tumoral/genética
2.
J Nucl Med ; 58(3): 492-498, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27765861

RESUMO

The aim of this study was to characterize brain metabolic abnormalities in patients with macrophagic myofascitis (MMF) and the relationship with cognitive dysfunction through the use of PET with 18F-FDG. Methods:18F-FDG PET brain imaging and a comprehensive battery of neuropsychological tests were performed in 100 consecutive MMF patients (age [mean ± SD], 45.9 ± 12 y; 74% women). Images were analyzed with statistical parametric mapping (SPM12). Through the use of analysis of covariance, all 18F-FDG PET brain images of MMF patients were compared with those of a reference population of 44 healthy subjects similar in age (45.4 ± 16 y; P = 0.87) and sex (73% women; P = 0.88). The neuropsychological assessment identified 4 categories of patients: those with no significant cognitive impairment (n = 42), those with frontal subcortical (FSC) dysfunction (n = 29), those with Papez circuit dysfunction (n = 22), and those with callosal disconnection (n = 7). Results: In comparison with healthy subjects, the whole population of patients with MMF exhibited a spatial pattern of cerebral glucose hypometabolism (P < 0.001) involving the occipital lobes, temporal lobes, limbic system, cerebellum, and frontoparietal cortices, as shown by analysis of covariance. The subgroup of patients with FSC dysfunction exhibited a larger extent of involved areas (35,223 voxels vs. 13,680 voxels in the subgroup with Papez circuit dysfunction and 5,453 voxels in patients without cognitive impairment). Nonsignificant results were obtained for the last subgroup because of its small population size. Conclusion: Our study identified a peculiar spatial pattern of cerebral glucose hypometabolism that was most marked in MMF patients with FSC dysfunction. Further studies are needed to determine whether this pattern could represent a diagnostic biomarker of MMF in patients with chronic fatigue syndrome and cognitive dysfunction.


Assuntos
Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Fasciite/metabolismo , Glucose/metabolismo , Miosite/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Adolescente , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encefalopatias Metabólicas/diagnóstico por imagem , Doença Crônica , Transtornos Cognitivos/diagnóstico por imagem , Fasciite/diagnóstico por imagem , Feminino , Fluordesoxiglucose F18/farmacocinética , Humanos , Masculino , Pessoa de Meia-Idade , Miosite/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
3.
Epigenomics ; 7(2): 283-300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942536

RESUMO

DNA methylation is implicated in tissue-specific gene expression and genomic imprinting. It is modulated by environmental factors, especially nutrition. Modified DNA methylation patterns may contribute to health problems and susceptibility to complex diseases. Current advances have suggested that the metabolic syndrome (MS) is a programmable disease, which is characterized by epigenetic modifications of vital genes when exposed to oxidative stress. Therefore, the main objective of this paper is to critically review the central context of MS while presenting the most recent knowledge related to epigenetic alterations that are promoted by oxidative stress. Potential pro-oxidant mechanisms that orchestrate changes in methylation profiling and are related to obesity, diabetes and hypertension are discussed. It is anticipated that the identification and understanding of the role of DNA methylation marks could be used to uncover early predictors and define drugs or diet-related treatments able to delay or reverse epigenetic changes, thereby combating MS burden.


Assuntos
Metilação de DNA , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Estresse Oxidativo , Diabetes Mellitus Tipo 2/etiologia , Epigênese Genética , Humanos , Hipertensão/etiologia , Síndrome Metabólica/enzimologia , Síndrome Metabólica/etiologia , Fenômenos Fisiológicos da Nutrição , Obesidade/etiologia
4.
PLoS One ; 8(5): e63456, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717425

RESUMO

INTRODUCTION: The gastrointestinal tract is frequently exposed to noxious stimuli that may cause oxidative stress, inflammation and injury. Intraluminal pro-oxidants from ingested nutrients especially iron salts and ascorbic acid frequently consumed together, can lead to catalytic formation of oxygen-derived free radicals that ultimately overwhelm the cellular antioxidant defense and lead to cell damage. HYPOTHESIS: Since the mechanisms remain sketchy, efforts have been exerted to evaluate the role of epigenetics in modulating components of endogenous enzymatic antioxidants in the intestine. To this end, Caco-2/15 cells were exposed to the iron-ascorbate oxygen radical-generating system. RESULTS: Fe/Asc induced a significant increase in lipid peroxidation as reflected by the elevated formation of malondialdehyde along with the alteration of antioxidant defense as evidenced by raised superoxide dismutase 2 (SOD2) and diminished glutathione peroxidase (GPx) activities and genes. Consequently, there was an up-regulation of inflammatory processes illustrated by the activation of NF-κB transcription factor, the higher production of interleukin-6 and cycloxygenase-2 as well as the decrease of IκB. Assessment of promoter's methylation revealed decreased levels for SOD2 and increased degree for GPx2. On the other hand, pre-incubation of Caco-2/15 cells with 5-Aza-2'-deoxycytidine, a demethylating agent, or Trolox antioxidant normalized the activities of SOD2 and GPx, reduced lipid peroxidation and prevented inflammation. CONCLUSION: Redox and inflammatory modifications in response to Fe/Asc -mediated lipid peroxidation may implicate epigenetic methylation.


Assuntos
Ácido Ascórbico/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Inflamação/induzido quimicamente , Intestinos/efeitos dos fármacos , Ferro/efeitos adversos , Peroxidação de Lipídeos/efeitos dos fármacos , Antioxidantes/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/genética , Células Epiteliais/metabolismo , Radicais Livres/efeitos adversos , Radicais Livres/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/genética , Inflamação/metabolismo , Interleucina-6/metabolismo , Intestinos/embriologia , Peroxidação de Lipídeos/genética , Malondialdeído/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Atherosclerosis ; 227(2): 297-306, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23422832

RESUMO

OBJECTIVES: The proprotein convertase subtillisin/kexin type 9 (PCSK9) regulates cholesterol metabolism via degradation of low-density lipoprotein receptor (LDLr). Although PCSK9 is abundantly expressed in the intestine, limited data are available on its functions. The present study aims at determining whether PCSK9 plays important roles in cholesterol homeostasis and lipid transport in the gut. METHODS AND RESULTS: Caco-2/15 cells were used allowing the exploration of the PCSK9 secretory route through the apical and basolateral compartments corresponding to intestinal lumen and serosal circulation, respectively. The output of PCSK9 occurred through the basolateral membrane, a site characterized by the location of LDLr. Co-immunoprecipitation studies indicated an association between PCSK9 and LDLr. Addition of purified recombinant wild type and D374Y gain-of function PCSK9 proteins to the basolateral medium was followed by a decrease in LDLr concomitantly with the accumulation of both forms of PCSK9. Furthermore, the latter caused a significant enhancement in cholesterol uptake also evidenced by a raised protein expression of cholesterol transporters NPC1L1 and CD36 without changes in SR-BI, ABCA1, and ABCG5/G8. Moreover, exogenous PCSK9 altered the activity of HMG-CoA reductase and acylcoenzyme A: cholesterol acyltransferase, and was able to enhance chylomicron secretion by positively modulating lipids and apolipoprotein B-48 biogenesis. Importantly, PCSK9 silencing led to opposite findings, which validate our data on the role of PCSK9 in lipid transport and metabolism. Moreover, PCSK9-mediated changes persisted despite LDLr knockdown. CONCLUSIONS: These findings indicate that, in addition to its effect on LDLr, PCSK9 modulates cholesterol transport and metabolism, as well as production of apo B-containing lipoproteins in intestinal cells.


Assuntos
Colesterol/metabolismo , Regulação Enzimológica da Expressão Gênica , Metabolismo dos Lipídeos , Pró-Proteína Convertases/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Transporte Biológico , Células CACO-2 , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Intestinos/citologia , Intestinos/enzimologia , Lipoproteínas/metabolismo , Pró-Proteína Convertase 9
6.
Pediatr Res ; 73(5): 592-5, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23411941

RESUMO

BACKGROUND: Neonatal total parenteral nutrition (TPN) is associated with animals with low glucose tolerance, body weight, and physical activity at adulthood. The early life origin of adult metabolic perturbations suggests a reprogramming of metabolism following epigenetic modifications induced by a change in the pattern of DNA expression. We hypothesized that peroxides contaminating TPN inhibit the activity of DNA methyltransferase (DNMT), leading to a modified DNA methylation state. METHODS: Three groups of 3-d-old guinea pigs with catheters in their jugular veins were compared: (i) control: enterally fed with regular chow; (ii) TPN: fed exclusively with TPN (dextrose, amino acids, lipids, multivitamins, contaminated with 350 ± 29 µmol/l peroxides); (iii) H2O2: control + 350 µmol/l H2O2 intravenously. After 4 d, infusions were stopped and animals enterally fed. Half the animals were killed immediately after treatments and half were killed 8 wk later (n = 4-6 per group) for hepatic determination of DNMT activities and of 5'-methyl-2'-deoxycytidine (5MedCyd) levels, a marker of DNA methylation. RESULTS: At 1 wk, DNMT and 5MedCyd were lower in the TPN and H2O2 groups as compared with controls. At 9 wk, DNMT remained lower in the TPN group, whereas 5MedCyd was lower in the TPN and H2O2 groups. CONCLUSION: Administration of TPN or H2O2 early in life in guinea pigs induces a sustained hypomethylation of DNA following inhibition of DNMT activity.


Assuntos
Metilação de DNA , Nutrição Parenteral Total , Animais , Animais Recém-Nascidos , Cobaias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...