Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Diabetes Metab Disord ; 23(1): 1271-1277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932803

RESUMO

Aims: Carnosinase (CN1) polymorphisms have been linked to diabetic kidney disease (DKD), as CN1 degrades dipeptides which scavenge oxidative metabolites and prevent the formation of advanced glycation end-products. In this work, we studied the association between serum CN1, the systemic redox status and long-term renal outcome in type 1 diabetes. Methods: Serum CN1 was measured in a prospective type 1 diabetes cohort (n = 218) with a 16-year follow-up. A total of 218 patients treated at the Diabetes Outpatient Clinic of the Weezenlanden Hospital (nowadays Isala Hospital, Zwolle, The Netherlands) were included in this analysis. We assessed whether serum CN1 was associated with renal function and development of DKD as well as other diabetic complications. Results: At baseline, age, systemic redox status and N-terminal pro brain-natriuretic peptide (NT-proBNP) were associated with serum CN1 concentration (p < 0.05). During follow-up, CN1 concentration in the middle tertile was associated with less incident microalbuminuria (odds ratio = 0.194, 95% C.I.: 0.049-0.772, p = 0.02) after adjustment for age, systemic redox status, NT-proBNP and sex. Discussion: Serum CN1 could predict incident microalbuminuria and may be used as a novel parameter to identify patients at risk for DKD.

2.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139026

RESUMO

Adipose-derived stem cells (ASCs) have been used as a therapeutic intervention for peripheral artery disease (PAD) in clinical trials. To further explore the therapeutic mechanism of these mesenchymal multipotent stromal/stem cells in PAD, this study was designed to test the effect of xenogeneic ASCs extracted from human adipose tissue on hypoxic endothelial cells (ECs) and terminal unfolded protein response (UPR) in vitro and in an atherosclerosis-prone apolipoprotein E-deficient mice (ApoE-/- mice) hindlimb ischemia model in vivo. ASCs were added to Cobalt (II) chloride-treated ECs; then, metabolic activity, cell migration, and tube formation were evaluated. Fluorescence-based sensors were used to assess dynamic changes in Ca2+ levels in the cytosolic- and endoplasmic reticulum (ER) as well as changes in reactive oxygen species. Western blotting was used to observe the UPR pathway. To simulate an acute-on-chronic model of PAD, ApoE-/- mice were subjected to a double ligation of the femoral artery (DLFA). An assessment of functional recovery after DFLA was conducted, as well as histology of gastrocnemius. Hypoxia caused ER stress in ECs, but ASCs reduced it, thereby promoting cell survival. Treatment with ASCs ameliorated the effects of ischemia on muscle tissue in the ApoE-/- mice hindlimb ischemia model. Animals showed less muscle necrosis, less inflammation, and lower levels of muscle enzymes after ASC injection. In vitro and in vivo results revealed that all ER stress sensors (BIP, ATF6, CHOP, and XBP1) were activated. We also observed that the expression of these proteins was reduced in the ASCs treatment group. ASCs effectively alleviated endothelial dysfunction under hypoxic conditions by strengthening ATF6 and initiating a transcriptional program to restore ER homeostasis. In general, our data suggest that ASCs may be a meaningful treatment option for patients with PAD who do not have traditional revascularization options.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Hipóxia/metabolismo , Resposta a Proteínas não Dobradas , Isquemia/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
3.
Am J Physiol Cell Physiol ; 325(6): C1558-C1566, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955125

RESUMO

We addressed if hyperfiltration can be assessed transcutaneously in male diabetic obese mice (BTBRob/ob) at 12 and 24 wk and how this relates to glomerular parameters indicative for hyperfiltration. Transcutaneous assessment of FITC-Sinistrin clearance [transcutaneous assessment of glomerular filtration rate (tGFR)] was compared against classical plasma clearance. Kidney from SV620C-01-PEI perfused mice were harvested at 24 wk and processed for tissue clearing and classical histology. Perfusion patterns of glomerular capillaries, glomerular size, and vasodilation of the afferent arterioles were assessed. Although at 12 wk FITC-Sinistrin half-life (t1/2) for both tGFR and plasma clearance suggested hyperfiltration, this was not significant anymore at 24 wk. In kidneys of diabetic mice the diameter of the afferent arteriole was significantly larger and positively correlated with glomerular size. Glomerular perfusion pattern in these mice was heterogeneous ranging from non- to well-perfused glomeruli. Nonperfused glomerular areas displayed a strong periodic acid-Schiff's (PAS) positive staining. Collectively our data demonstrate that tGFR is a valid method to detect hyperfiltration. Hyperfiltration occurs early in BTBRob/ob mice and disappears with disease progression as a consequence of a reduced filtration surface. It remains to be assessed if tGFR is also a valid method in diabetic mice with severely compromised renal function.NEW & NOTEWORTHY tGFR measurement is a relatively new method to assess kidney function in conscious rodents, which can be repeated multiple times in the same animal to track the course of the disease and/or the effect of potential treatments. Since the literature was inconclusive on the suitability of this technique in obese mice, we validated it for the first time against classical plasma clearance in the commonly used BTBRob/ob mouse model.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Nefropatias , Masculino , Camundongos , Animais , Taxa de Filtração Glomerular , Camundongos Obesos , Fluoresceínas
4.
Sci Rep ; 13(1): 16159, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758738

RESUMO

Systemic inflammation affects the whole vasculature, yet whether arterial and venous endothelial cells differ in their abilities to mediate inflammation and to return to homeostasis after an inflammatory stimulus has not been addressed thoroughly. We assessed gene-expression profiles in isolated endothelial cells from human umbilical arteries (HUAEC) or veins (HUVEC) under basal conditions, after TNF-α stimulation and various time points after TNF-α removal to allow reinstatement of homeostasis. TNF-α regulates the expression of different sets of transcripts that are significantly changed only in HUAEC, only in HUVEC or changed in both. We identified three types of gene regulation, i.e. genes that were significantly regulated after 24 h of TNF-α stimulation but no longer when TNF-α was removed (homeostatic regulation), genes that maintained significantly regulated after TNF-α removal (not homeostatic regulation) and genes that were only significantly regulated when TNF-α was removed (post-regulation). HUAEC and HUVEC quantitatively differed in these types of gene regulation, with relatively more genes being post-regulated in HUAEC. In conclusion our data demonstrate that HUAEC and HUVEC respond intrinsically different to an inflammatory insult. Whether this holds true for all endothelial cells and its relevance for inflammatory insults in different organs during systemic inflammation warrants further studies.


Assuntos
Células Endoteliais , Fator de Necrose Tumoral alfa , Humanos , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Veias Umbilicais , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo
5.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569572

RESUMO

Innate immune memory allows macrophages to adequately respond to pathogens to which they have been pre-exposed. To what extent different pattern recognition receptors, cytokines and resolution signals influence innate immune memory needs further elucidation. The present study assessed whether lipopolysaccharide (LPS) tolerance in monocytes and macrophages is affected by these factors. Human CD14+ cells were isolated from peripheral blood, stimulated by LPS and re-stimulated after 3 days of resting. Hereafter, immune-responsive gene 1 (IRG-1), heme oxygenase 1 (HO-1), tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) expression were assessed. Our study revealed the following findings: (1) While pre-stimulation with the Toll-like receptor 4 ligand LPS inhibits the induction of IRG-1, TNF-α and IL-6 expression, pre-stimulation with TLR 1/2 ligands only affects cytokine production but not IRG-1 expression upon subsequent TLR4 engagement. (2) Prior TNF-α stimulation does not affect LPS tolerance but rather increases LPS-mediated cytokine expression. (3) Dimethyl itaconate (DMI) inhibits the expression of IRG-1 in a dose-dependent manner but does not affect TNF-α or IL-6 expression. (4) Docosahexaenoic acid (DHA) partly inhibits IRG-1 expression in monocytes but not in M(IFNγ) and M(IL-4) polarized macrophages. LPS tolerance is not affected in these cells by DHA. The data presented in this study partly corroborate and extend previous findings on innate immune memory and warrant further studies on LPS tolerance to gain a better understanding of innate immune memory at the molecular level.


Assuntos
Lipopolissacarídeos , Monócitos , Humanos , Monócitos/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Tolerância Imunológica
6.
Front Pharmacol ; 13: 899057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873562

RESUMO

Introduction: Genetic studies have identified associations of carnosinase 1 (CN1) polymorphisms with diabetic kidney disease (DKD). However, CN1 levels and activities have not been assessed as diagnostic or prognostic markers of DKD in cohorts of patients with type 2 diabetes (T2D). Methods: We established high-throughput, automated CN1 activity and concentration assays using robotic systems. Using these methods, we determined baseline serum CN1 levels and activity in a T2D cohort with 970 patients with no or only mild renal impairment. The patients were followed for a mean of 1.2 years. Baseline serum CN1 concentration and activity were assessed as predictors of renal function impairment and incident albuminuria during follow up. Results: CN1 concentration was significantly associated with age, gender and estimated glomerular filtration rate (eGFR) at baseline. CN1 activity was significantly associated with glycated hemoglobin A1c (HbA1c) and eGFR. Serum CN1 at baseline was associated with eGFR decline and predicted renal function impairment and incident albuminuria during the follow-up. Discussion: Baseline serum CN1 levels were associated with presence and progression of renal function decline in a cohort of T2D patients. Confirmation in larger cohorts with longer follow-up observation periods will be required to fully establish CN1 as a biomarker of DKD.

7.
Am J Physiol Renal Physiol ; 323(1): F69-F80, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35635322

RESUMO

Dysregulation in glomerular hemodynamics favors hyperfiltration in diabetic kidney disease (DKD). Although carnosine supplementation ameliorates features of DKD, its effect on glomerular vasoregulation is not known. We assessed the influence of carnosine and carnosinase-1 (CN1) on afferent glomerular arteriole vasodilation and its association with glomerular size, hypertrophy, and nephrin expression in diabetic BTBRob/ob mice. Two cohorts of mice including appropriate controls were studied: i.e., diabetic mice that received oral carnosine supplementation (cohort 1) and human (h)CN1 transgenic (TG) diabetic mice (cohort 2). The lumen area ratio (LAR) of the afferent arterioles and glomerular parameters were measured by conventional histology. Three-dimensional analysis using a tissue clearing strategy was also used. In both cohorts, LAR was significantly larger in diabetic BTBRob/ob versus nondiabetic BTBRwt/ob mice (0.41 ± 0.05 vs. 0.26 ± 0.07, P < 0.0001 and 0.42 ± 0.06 vs. 0.29 ± 0.04, P < 0.0001) and associated with glomerular size (cohort 1: r = 0.55, P = 0.001 and cohort 2: r = 0.89, P < 0.0001). LAR was partially normalized by oral carnosine supplementation (0.34 ± 0.05 vs. 0.41 ± 0.05, P = 0.004) but did not differ between hCN1 TG and wild-type BTBRob/ob mice. In hCN1 TG mice, serum CN1 concentrations correlated with LAR (r = 0.90, P = 0.006). Diabetic mice displayed decreased nephrin expression and increased glomerular hypertrophy. This was not significantly different in hCN1 TG BTBRob/ob mice (P = 0.06 and P = 0.08, respectively). In conclusion, carnosine and CN1 may affect intraglomerular pressure in an opposing manner through the regulation of afferent arteriolar tone. This study corroborates previous findings on the role of carnosine in the progression of DKD.NEW & NOTEWORTHY Dysregulation in glomerular hemodynamics favors hyperfiltration in diabetic kidney disease (DKD). Although carnosine supplementation ameliorates features of DKD, its effect on glomerular vasoregulation is not known. We assessed the influence of carnosine and carnosinase-1 (CN1) on afferent glomerular arteriole vasodilation and its association with glomerular size, hypertrophy, and nephrin expression in diabetic BTBRob/ob mice. Our results provide evidence that carnosine feeding and CN1 overexpression likely affect intraglomerular pressure through vasoregulation of the afferent arteriole.


Assuntos
Carnosina , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Arteríolas/metabolismo , Carnosina/metabolismo , Carnosina/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Dipeptidases , Humanos , Hipertrofia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Vasodilatação
8.
J Leukoc Biol ; 112(3): 437-447, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35075676

RESUMO

In atherosclerotic lesions, macrophages are exposed to CSFs and various microenvironmental cues, which ultimately drive their polarization state. We studied the expression of different CSFs in artery specimen and cultured vascular cells and assessed whether concurrent stimulation (CS) of monocytes with CSF1 and polarizing cytokines generated macrophages (CSM1 and CSM2) that were phenotypically and functionally different from classically polarized M1 and M2 macrophages. We also assessed the influence of acetylsalicylic acid (ASA) on the capacity of polarized macrophages to stimulate T-cell proliferation. CSF1 was the most prominent CSF expressed in arteries and cultured vascular cells. M1 and CSM1 macrophages differed in CD86 and CD14 expression, which was up-regulated respectively down-regulated by LPS. M2 and CSM2 macrophages were phenotypically similar. Cyclooxygenase expression was different in CSM1 (COX-1- and COX-2+ after LPS stimulation) and CSM2 (COX-1+ and COX-2- ) macrophages. TNFα production was more pronounced in CSM1 macrophages, whereas IL-10 was produced at higher levels by CSM2 macrophages. Proliferation of allogeneic T cells was strongly supported by CSM2, but not by CSM1 polarized macrophages. Although ASA did not affect anti-CD3/CD28-mediated proliferation, it significantly reduced CSM2 and CSM1-mediated T-cell proliferation. Supernatants of LPS-stimulated CSM2 but not of CSM1 macrophages could overcome the inhibition by ASA. Hence, we demonstrate that CSM1 and CSM2 macrophages are phenotypically and to some extent functionally distinct from classically polarized M1 and M2 macrophages. CSM2 macrophages produce a COX-1-dependent soluble factor that supports T-cell proliferation, the identity hereof is still elusive and warrants further studies.


Assuntos
Citocinas , Monócitos , Diferenciação Celular , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo
9.
Front Pharmacol ; 12: 702392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552483

RESUMO

Although the vasoactive properties of carbon monoxide (CO) have been extensively studied, the mechanism by which CO mediates vasodilation is not completely understood. Through-out published studies on CO mediated vasodilation there is inconsistency on the type of K+-channels that are activated by CO releasing molecules (CORMs). Since the vasorelaxation properties of enzyme triggered CORMs (ET-CORMs) have not been studied thus far, we first assessed if ET-CORMs can mediate vasodilation of small mesenteric arteries and subsequently addressed the role of soluble guanylate cyclase (sGC) and that of K-channels herein. To this end, 3 different types of ET-CORMs that either contain acetate (rac-1 and rac-4) or pivalate (rac-8) as ester functionality, were tested ex vivo on methoxamine pre-contracted small rat mesenteric arteries in a myograph setting. Pre-contracted mesenteric arteries strongly dilated upon treatment with both types of acetate containing ET-CORMs (rac-1 and rac-4), while treatment with the pivalate containing ET-CORM (rac-8) resulted in no vasodilation. Pre-treatment of mesenteric arteries with the sGC inhibitor ODQ abolished rac-4 mediated vasodilation, similar as for the known sGC activator SNP. Likewise, rac-4 mediated vasodilation did not occur in KCL pretreated mesenteric arteries. Although mesenteric arteries abundantly expressed a variety of K+-channels only Kv7 channels were found to be of functional relevance for rac-4 mediated vasodilation. In conclusion the current results identified Kv7 channels as the main channel by which rac-4 mediates vasodilation. In keeping with the central role of Kv7 in the control of vascular tone and peripheral resistance these promising ex-vivo data warrant further in vivo studies, particularly in models of primary hypertension or cardiac diseases, to assess the potential use of ET-CORMs in these diseases.

10.
Antioxidants (Basel) ; 10(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356335

RESUMO

Carnosine affords protection against oxidative and carbonyl stress, yet high concentrations of the carnosinase-1 enzyme may limit this. We recently reported that high urinary carnosinase-1 is associated with kidney function decline and albuminuria in patients with chronic kidney disease. We prospectively investigated whether urinary carnosinase-1 is associated with a high risk for development of late graft failure in kidney transplant recipients (KTRs). Carnosine and carnosinase-1 were measured in 24 h urine in a longitudinal cohort of 703 stable KTRs and 257 healthy controls. Cox regression was used to analyze the prospective data. Urinary carnosine excretions were significantly decreased in KTRs (26.5 [IQR 21.4-33.3] µmol/24 h versus 34.8 [IQR 25.6-46.8] µmol/24 h; p < 0.001). In KTRs, high urinary carnosinase-1 concentrations were associated with increased risk of undetectable urinary carnosine (OR 1.24, 95%CI [1.06-1.45]; p = 0.007). During median follow-up for 5.3 [4.5-6.0] years, 84 (12%) KTRs developed graft failure. In Cox regression analyses, high urinary carnosinase-1 excretions were associated with increased risk of graft failure (HR 1.73, 95%CI [1.44-2.08]; p < 0.001) independent of potential confounders. Since urinary carnosine is depleted and urinary carnosinase-1 imparts a higher risk for graft failure in KTRs, future studies determining the potential of carnosine supplementation in these patients are warranted.

11.
Am J Clin Nutr ; 114(4): 1505-1517, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34091671

RESUMO

BACKGROUND: It is unknown whether meat intake is beneficial for long-term patient and graft survival in kidney transplant recipients (KTR). OBJECTIVES: We first investigated the association of the previously described meat intake biomarkers 1-methylhistidine and 3-methylhistidine with intake of white and red meat as estimated from a validated food frequency questionnaire (FFQ). Second, we investigated the association of the meat intake biomarkers with long-term outcomes in KTR. METHODS: We measured 24-h urinary excretion of 1-methylhistidine and 3-methylhistidine by validated assays in a cohort of 678 clinically stable KTR. Cross-sectional associations were assessed by linear regression. We used Cox regression analyses to prospectively study associations of log2-transformed biomarkers with mortality and graft failure. RESULTS: Urinary 1-methylhistidine and 3-methylhistidine excretion values were median: 282; interquartile range (IQR): 132-598 µmol/24 h and median: 231; IQR: 175-306 µmol/24 h, respectively. Urinary 1-methylhistidine was associated with white meat intake [standardized ß (st ß): 0.20; 95% CI: 0.12, 0.28; P < 0.001], whereas urinary 3-methylhistidine was associated with red meat intake (st ß: 0.30; 95% CI: 0.23, 0.38; P < 0.001). During median follow-up for 5.4 (IQR: 4.9-6.1) y, 145 (21%) died and 83 (12%) developed graft failure. Urinary 3-methylhistidine was inversely associated with mortality independently of potential confounders (HR per doubling: 0.55; 95% CI: 0.42, 0.72; P < 0.001). Both urinary 1-methylhistidine and urinary 3-methylhistidine were inversely associated with graft failure independent of potential confounders (HR per doubling: 0.84; 95% CI: 0.73, 0.96; P = 0.01; and 0.59; 95% CI: 0.41, 0.85; P = 0.004, respectively). CONCLUSIONS: High urinary 3-methylhistidine, reflecting higher red meat intake, is independently associated with lower risk of mortality. High urinary concentrations of both 1- and 3-methylhistidine, of which the former reflects higher white meat intake, are independently associated with lower risk of graft failure in KTR. Future intervention studies are warranted to study the effect of high meat intake on mortality and graft failure in KTR, using these biomarkers.


Assuntos
Dieta/efeitos adversos , Rejeição de Enxerto/etiologia , Transplante de Rim , Aves Domésticas , Carne Vermelha , Animais , Biomarcadores/urina , Feminino , Rejeição de Enxerto/urina , Humanos , Masculino , Metilistidinas/urina , Pessoa de Meia-Idade , Fatores de Risco , Transplantados
12.
Sci Rep ; 11(1): 8004, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850227

RESUMO

Methylglyoxal (MGO), a precursor of advanced glycation end products (AGEs), is regarded as a pivotal mediator of vascular damage in patients with diabetes. We have previously reported that MGO induces transcriptional changes compatible with p53 activation in cultured human endothelial cells. To further substantiate this finding and to explore the underlying mechanisms and possible consequences of p53 activation, we aimed (1) to provide direct evidence for p53 activation in MGO-treated human umbilical vein endothelial cells (HUVECs), (2) to assess putative mechanisms by which this occurs, (3) to analyze down-stream effects on mTOR and autophagy pathways, and (4) to assess the potential benefit of carnosine herein. Exposure of HUVECs to 800 µM of MGO for 5 h induced p53 phosphorylation. This was paralleled by an increase in TUNEL and γ-H2AX positive cells, indicative for DNA damage. Compatible with p53 activation, MGO treatment resulted in cell cycle arrest, inhibition of mTORC1 and induction of autophagy. Carnosine co-treatment did not counteract MGO-driven effects. In conclusion, our results demonstrate that MGO elicits DNA damage and p53 activation in HUVECs, resulting in modulation of downstream pathways, e.g. mTORC1.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Aldeído Pirúvico/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Autofagia/efeitos dos fármacos , Carnosina/farmacologia , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
13.
PLoS One ; 15(11): e0242827, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253309

RESUMO

Donor brain death (BD) is initiated by an increase in intracranial pressure (ICP), which subsequently damages the donor lung. In this study, we investigated whether the speed of ICP increase affects quality of donor lungs, in a rat model for fast versus slow BD induction. Rats were assigned to 3 groups: 1) control, 2) fast BD induction (ICP increase over 1 min) or 3) slow BD induction (ICP increase over 30 min). BD was induced by epidural inflation of a balloon catheter. Brain-dead rats were sacrificed after 0.5 hours, 1 hour, 2 hours and 4 hours to study time-dependent changes. Hemodynamic stability, histological lung injury and inflammatory status were investigated. We found that fast BD induction compromised hemodynamic stability of rats more than slow BD induction, reflected by higher mean arterial pressures during the BD induction period and an increased need for hemodynamic support during the BD stabilization phase. Furthermore, fast BD induction increased histological lung injury scores and gene expression levels of TNF-α and MCP-1 at 0.5 hours after induction. Yet after donor stabilization, inflammatory status was comparable between the two BD models. This study demonstrates fast BD induction deteriorates quality of donor lungs more on a histological level than slow BD induction.


Assuntos
Morte Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Transplante de Pulmão , Pulmão/fisiopatologia , Animais , Hemodinâmica , Masculino , Ratos , Doadores de Tecidos
14.
J Mol Med (Berl) ; 98(9): 1333-1346, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32803273

RESUMO

OBJECTIVE: To assess the influence of serum carnosinase (CN1) on the course of diabetic kidney disease (DKD). METHODS: hCN1 transgenic (TG) mice were generated in a BTBROb/Ob genetic background to allow the spontaneous development of DKD in the presence of serum carnosinase. The influence of serum CN1 expression on obesity, hyperglycemia, and renal impairment was assessed. We also studied if aggravation of renal impairment in hCN1 TG BTBROb/Ob mice leads to changes in the renal transcriptome as compared with wild-type BTBROb/Ob mice. RESULTS: hCN1 was detected in the serum and urine of mice from two different hCN1 TG lines. The transgene was expressed in the liver but not in the kidney. High CN1 expression was associated with low plasma and renal carnosine concentrations, even after oral carnosine supplementation. Obese hCN1 transgenic BTBROb/Ob mice displayed significantly higher levels of glycated hemoglobin, glycosuria, proteinuria, and increased albumin-creatinine ratios (1104 ± 696 vs 492.1 ± 282.2 µg/mg) accompanied by an increased glomerular tuft area and renal corpuscle size. Gene-expression profiling of renal tissue disclosed hierarchical clustering between BTBROb/Wt, BTBROb/Ob, and hCN1 BTBROb/Ob mice. Along with aggravation of the DKD phenotype, 26 altered genes have been found in obese hCN1 transgenic mice; among them claudin-1, thrombospondin-1, nephronectin, and peroxisome proliferator-activated receptor-alpha have been reported to play essential roles in DKD. CONCLUSIONS: Our data support a role for serum carnosinase 1 in the progression of DKD. Whether this is mainly attributed to the changes in renal carnosine concentrations warrants further studies. KEY MESSAGES: Increased carnosinase 1 (CN1) is associated with diabetic kidney disease (DKD). BTBROb/Ob mice with human CN1 develop a more aggravated DKD phenotype. Microarray revealed alterations by CN1 which are not altered by hyperglycemia. These genes have been described to play essential roles in DKD. Inhibiting CN1 could be beneficial in DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas/etiologia , Dipeptidases/genética , Expressão Gênica , Animais , Biomarcadores , Biologia Computacional/métodos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Dipeptidases/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Obesos , Camundongos Transgênicos
15.
Sci Rep ; 9(1): 19338, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31853095

RESUMO

IFNγ enhances allograft immunogenicity and facilitates T-cell mediated rejection. This may cause interstitial fibrosis and tubular atrophy (IFTA), contributing to chronic allograft loss. We assessed if inhibition of T-cell activation by N-octanoyl dopamine (NOD) impairs adherence of activated T-cells to endothelial cells and the ability of activated T-cells to produce IFNγ. We also assessed if NOD affects IFNγ mediated gene expression in endothelial cells. The presence of NOD during T-cell activation significantly blunted their adhesion to unstimulated and cytokine stimulated HUVEC. Supernatants of these T-cells displayed significantly lower concentrations of TNFα and IFNγ and were less capable to facilitate T-cell adhesion. In the presence of NOD VLA-4 (CD49d/CD29) and LFA-1 (CD11a/CD18) expression on T-cells was reduced. NOD treatment of IFNγ stimulated HUVEC reduced the expression of MHC class II transactivator (CIITA), of MHC class II and its associated invariant chain CD74. Since IFTA is associated with T-cell mediated rejection and IFNγ to a large extent regulates immunogenicity of allografts, our current data suggest a potential clinical use of NOD in the treatment of transplant recipients. Further in vivo studies are warranted to confirm these in vitro findings and to assess the benefit of NOD on IFTA in clinically relevant models.


Assuntos
Moléculas de Adesão Celular/metabolismo , Dopamina/análogos & derivados , Antígenos de Histocompatibilidade Classe II/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interferon gama/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Adesão Celular/efeitos dos fármacos , Dopamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Antígenos HLA-DR/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Integrina alfa4beta1/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Transativadores/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
Kidney Blood Press Res ; 44(4): 435-448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31307039

RESUMO

BACKGROUND: The cholinergic anti-inflammatory pathway, positioned at the interface of the nervous and immune systems, is the efferent limb of the "inflammatory reflex" which mainly signals through the vagus nerve. As such, the brain can modulate peripheral inflammatory responses by the activation of vagal efferent fibers. Importantly, immune cells in the spleen express most cholinergic system components such as acetylcholine (ACh), choline acetyltransferase, acetylcholinesterase, and both muscarinic and nicotinic ACh receptors, making communication between both systems possible. In general, this communication down-regulates the inflammation, achieved through different mechanisms and depending on the cells involved. SUMMARY: With the awareness that the cholinergic anti-inflammatory pathway serves to prevent or limit inflammation in peripheral organs, vagus nerve stimulation has become a promising strategy in the treatment of several inflammatory conditions. Both pharmacological and non-pharmacological methods have been used in many studies to limit organ injury as a consequence of inflammation. Key Messages: In this review, we will highlight our current knowledge of the cholinergic anti-inflammatory pathway, with emphasis on its potential clinical use in the treatment of inflammation-triggered kidney injury.


Assuntos
Inflamação/prevenção & controle , Rim/lesões , Neuroimunomodulação/efeitos dos fármacos , Animais , Humanos , Inflamação/complicações , Inflamação/etiologia , Nefropatias/etiologia , Nefropatias/prevenção & controle , Neuroimunomodulação/fisiologia , Nervo Vago/fisiologia
17.
Sci Rep ; 9(1): 1152, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718683

RESUMO

Although methylglyoxal (MGO) has emerged as key mediator of diabetic microvascular complications, the influence of MGO on the vascular transcriptome has not thoroughly been assessed. Since diabetes is associated with low grade inflammation causing sustained nuclear factor-kappa B (NF-κB) activation, the current study addressed 1) to what extent MGO changes the transcriptome of human umbilical vein endothelial cells (HUVECs) exposed to an inflammatory milieu, 2) what are the dominant pathways by which these changes occur and 3) to what extent is this affected by carnosine, a putative scavenger of MGO. Microarray analysis revealed that exposure of HUVECs to high MGO concentrations significantly changes gene expression, characterized by prominent down-regulation of cell cycle associated genes and up-regulation of heme oxygenase-1 (HO-1). KEGG-based pathway analysis identified six significantly enriched pathways of which the p53 pathway was the most affected. No significant enrichment of inflammatory pathways was found, yet, MGO did inhibit VCAM-1 expression in Western blot analysis. Carnosine significantly counteracted MGO-mediated changes in a subset of differentially expressed genes. Collectively, our results suggest that MGO initiates distinct transcriptional changes in cell cycle/apoptosis genes, which may explain MGO toxicity at high concentrations. MGO did not augment TNF-α induced inflammation.


Assuntos
Ciclo Celular/efeitos dos fármacos , Genes cdc/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Carnosina/farmacologia , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
18.
Amino Acids ; 51(4): 611-617, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30610469

RESUMO

This study assessed if serum carnosinase (CNDP1) activity and concentration in patients with type 2 diabetes mellitus (T2D) with diabetic nephropathy (DN) differs from those without nephropathy. In a cross-sectional design 127 patients with T2D with DN ((CTG)5 homozygous patients n = 45) and 145 patients with T2D without nephropathy ((CTG)5 homozygous patients n = 47) were recruited. Univariate and multivariate regression analyses were performed to predict factors relevant for serum CNDP1 concentration. CNDP1 (CTG)5 homozygous patients with T2D with DN had significantly lower CNDP1 concentrations (30.4 ± 18.3 vs 51.2 ± 17.6 µg/ml, p < 0.05) and activity (1.25 ± 0.5 vs 2.53 ± 1.1 µmol/ml/h, p < 0.05) than those without nephropathy. This applied for patients with DN on the whole, irrespective of (CTG)5 homozygosity. In the multivariate regression analyses, lower serum CNDP1 concentrations correlated with impaired renal function and to a lesser extend with the CNDP1 genotype (95% CI of regression coefficients: eGFR: 0.10-1.94 (p = 0.001); genotype: - 0.05 to 5.79 (p = 0.055)). Our study demonstrates that serum CNDP1 concentrations associate with CNDP1 genotype and renal function in patients with T2D. Our data warrant further studies using large cohorts to confirm these findings and to delineate the correlation between low serum CNDP1 concentrations and renal function deterioration in patients with T2D.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Dipeptidases/genética , Dipeptidases/metabolismo , Polimorfismo de Nucleotídeo Único , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Nefropatias Diabéticas/patologia , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
19.
J Diabetes Res ; 2019: 6850628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31950064

RESUMO

BACKGROUND: Carnosinase-1 (CN-1) can be detected in 24 h urine of healthy individuals and patients with type 2 diabetes (T2DM). We aimed to assess whether urinary CN-1 is also reliably measured in spot urine and investigated its association with renal function and the albumin/creatinine ratio (ACR). We also assessed associations between the CNDP1 (CTG) n genotype and CN-1 concentrations in serum and urine. METHODS: Patients with T2DM (n = 85) and nondiabetic patients with chronic kidney disease (CKD) (n = 26) stratified by albuminuria (ACR ≤ 300 mg/g or ACR > 300 mg/g) recruited from the nephrology clinic and healthy subjects (n = 24) were studied. RESULTS: Urinary CN-1 was more frequently detected and displayed higher concentrations in patients with ACR > 300 mg/g as compared to those with ACR ≤ 300 mg/g irrespective of the baseline disease (T2DM: 554 ng/ml [IQR 212-934 ng/ml] vs. 31 ng/ml [IQR 31-63 ng/ml] (p < 0.0001) and nondiabetic CKD: 197 ng/ml [IQR 112-739] vs. 31 ng/ml [IQR 31-226 ng/ml] (p = 0.015)). A positive correlation between urinary CN-1 and ACR was found (r = 0.68, p < 0.0001). Multivariate linear regression analysis revealed that ACR and serum CN-1 concentrations but not eGFR or the CNDP1 genotype are independent predictors of urinary CN-1, explaining 47% of variation of urinary CN-1 concentrations (R 2 = 0.47, p < 0.0001). CONCLUSION: These results confirm and extend previous findings on urinary CN-1 concentrations, suggesting that assessment of CN-1 in spot urine is as reliable as in 24 h urine and may indicate that urinary CN-1 in macroalbuminuric patients is primarily serum-derived and not locally produced.


Assuntos
Albuminúria/urina , Nefropatias Diabéticas/metabolismo , Dipeptidases/genética , Dipeptidases/urina , Insuficiência Renal Crônica/metabolismo , Idoso , Creatinina/sangue , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidases/sangue , Feminino , Genótipo , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Albumina Sérica/análise
20.
Amino Acids ; 51(1): 7-16, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29922921

RESUMO

Carnosinase 1 (CN1) has been postulated to be a susceptibility factor for developing diabetic nephropathy (DN). Although its major substrate, carnosine, is beneficial in rodent models of DN, translation of these findings to humans has been hampered by high CN1 activity in human serum resulting in rapid degradation of carnosine. To overcome this hurdle, we screened a protease-directed small-molecule library for inhibitors of human recombinant CN1. We identified SAN9812 as a potent and highly selective inhibitor of CN1 activity with a Ki of 11 nM. It also inhibited CN1 activity in human serum and serum of transgenic mice-overexpressing human CN1. Subcutaneous administration of 30 mg/kg SAN9812 led to a sustained reduction in circulating CN1 activity in human CN1 transgenic (TG) mice. Simultaneous administration of carnosine and SAN9812 increased carnosine levels in plasma and kidney by up to 100-fold compared to treatment-naïve CN1-overexpressing mice. To our knowledge, this is the first study reporting on a potent and selective CN1 inhibitor with in vivo activity. SAN9812, also called carnostatine, may be used to increase renal carnosine concentration as a potential therapeutic modality for renal diseases linked to glycoxidative conditions.


Assuntos
Carnosina/administração & dosagem , Dipeptidases/antagonistas & inibidores , Descoberta de Drogas , Imidazóis/farmacologia , Propionatos/farmacologia , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Adulto , Animais , Carnosina/sangue , Dipeptidases/sangue , Dipeptidases/genética , Feminino , Expressão Gênica , Humanos , Imidazóis/química , Injeções Subcutâneas , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Propionatos/química , Inibidores de Proteases/química , Ligação Proteica , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequenas/química , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...