Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 311: 122668, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38908232

RESUMO

Conventional wound approximation devices, including sutures, staples, and glues, are widely used but risk of wound dehiscence, local infection, and scarring can be exacerbated in these approaches, including in diabetic and obese individuals. This study reports the efficacy and quality of tissue repair upon photothermal sealing of full-thickness incisional skin wounds using silk fibroin-based laser-activated sealants (LASEs) containing copper chloride salt (Cu-LASE) or silver nanoprisms (AgNPr-LASE), which absorb and convert near-infrared (NIR) laser energy to heat. LASE application results in rapid and effective skin sealing in healthy, immunodeficient, as well as diabetic and obese mice. Although lower recovery of epidermal structure and function was seen with AgNPr-LASE sealing, likely because of the hyperthermia induced by laser and presence of this material in the wound space, this approach resulted in higher enhancement in recovery of skin biomechanical strength compared to sutures and Cu-LASEs in diabetic, obese mice. Histological and immunohistochemical analyses revealed that AgNPr-LASEs resulted in significantly lower neutrophil migration to the wound compared to Cu-LASEs and sutures, indicating a more muted inflammatory response. Cu-LASEs resulted in local tissue toxicity likely because of effects of copper ions as manifested in the form of a significant epidermal gap and a 'depletion zone', which was a region devoid of viable cells proximal to the wound. Compared to sutures, LASE-mediated sealing, in later stages of healing, resulted in increased angiogenesis and diminished myofibroblast activation, which can be indicative of lower scarring. AgNPr-LASE loaded with vancomycin, an antibiotic drug, significantly lowered methicillin-resistant Staphylococcus aureus (MRSA) load in a pathogen challenge model in diabetic and obese mice and also reduced post-infection inflammation of tissue compared to antibacterial sutures. Taken together, these attributes indicate that AgNPr-LASE demonstrated a more balanced quality of tissue sealing and repair in diabetic and obese mice and can be used for combating local infections, that can result in poor healing in these individuals.

2.
ACS Omega ; 7(37): 33423-33431, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157721

RESUMO

A colorimetric assay has been developed for Zn2+ and homocysteine (Hcy) detection using functionalized silver nanoparticles (AgNPs). AgNPs have been synthesized using silver nitrate, where sodium citrate is used as a stabilizing agent and NaBH4 as a reducing agent. Then, the nanoparticles (citrate@AgNPs) were functionalized with 1H-imidazole-4,5-dicarboxylic acid (IDCA). UV-visible and FTIR spectra suggested that IDCA was functionalized on the surface of citrate@AgNPs through the N atom of the imidazole ring. The IDCA-functionalized silver nanoparticles (IDCA@AgNPs) simultaneously detected Zn2+ and Hcy from aqueous solution and showed different responses to the two analytes (Zn2+ and Hcy) based on the aggregation-induced color change of IDCA@AgNPs. They showed the color change from yellow to red, which was easily discriminated by visual inspection as well as UV-visible spectroscopy. The surface plasmon resonance absorbance values of Zn2+ and Hcy are 485 and 512 nm, respectively, when Zn2+ and Hcy react with IDCA@AgNPs. IDCA@AgNPs showed linearity with Zn2+ and Hcy concentrations, with the detection limit of 2.38 µM and 0.54 nM, respectively (S/N = 3). The IDCA@AgNPs showed excellent selectivity toward Zn2+ and Hcy compared to the different metal ions and amino acids, respectively. Optimal detection was achieved toward Zn2+ and Hcy in the pH range 3-10. In addition, IDCA@AgNPs were used to detect Zn2+ and Hcy from lake water, showing low interference.

3.
Quantum Beam Sci ; 6(4)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38765796

RESUMO

To enhance the solubility of orally administered pharmaceuticals, liquid capsules or amorphous tablets are often preferred over crystalline drug products. However, little is known regarding the variation in bonding mechanisms between pharmaceutical molecules in their different disordered forms. In this study, liquid and melt-quenched glassy carbamazepine have been studied using high energy X-ray diffraction and modeled using Empirical Potential Structure Refinement. The results show significant structural differences between the liquid and glassy states. The liquid shows a wide range of structures; from isolated molecules, to aromatic ring correlations and NH-O hydrogen bonding. Upon quenching from the liquid to the glass the number of hydrogen bonds per molecule increases by ~50% at the expense of a ~30% decrease in the close contact (non-bonded) carbon-carbon interactions between aromatic rings. During the cooling process, there is an increase in both singly and doubly hydrogen-bonded adjacent molecules. Although hydrogen-bonded dimers found in the crystalline states persist in the glassy state, the absence of a crystalline lattice also allows small, hydrogen-bonded NH-O trimers and tetramers to form. This proposed model for the structure of glassy carbamazepine is consistent with the results from vibrational spectroscopy and nuclear magnetic resonance.

4.
ACS Appl Mater Interfaces ; 13(31): 37494-37499, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319711

RESUMO

We report a new synthetic protocol for preparing highly ordered two-dimensional nanoporous covalent organic frameworks (2D-COFs) based on a quinoxaline backbone. The quinoxaline framework represents a new type of COF that enables postsynthetic modification by placing two different chemical functionalities within the nanopores including layer-to-layer cross-linking. We also demonstrate that membranes fabricated using this new 2D-COF perform highly selective separations resulting in dramatic performance enhancement post cross-linking.

5.
J Phys Chem B ; 123(8): 1815-1821, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30779573

RESUMO

Protic ionic liquids (PILs) are made by proton transfer from a Brønsted acid to a base and are of interest for their solvent and electrolyte properties such as high ionic conductivity. Unfortunately, many PILs have been misnamed, because their ionic content is minimal due to an insufficient driving force for the proton transfer. Here we review this problem and introduce a new method, using 15N NMR spectroscopy, of characterizing the relation between the extent of proton transfer to a given base and the strength of the proton-donating acid. The experimental data reveal a sigmoid "titration type" curve that indicates clearly the acid strength, at which molecule bases, of substituted pyridine type, are fully protonated. We compare results for two bases of similar shape but different basicity, protonated by equimolar amounts of the different acids. The extent of protonation is also reflected in the ionic conductivity, and we show that the important part of the protonation sigmoid is quantitatively reproduced by data for conductivity and viscosity displayed in the form of a Walden plot (log equivalent conductivity vs log fluidity). The acid strength, for this study, is based on gas phase proton affinities, but we note that a similar sigmoid is obtained if we use the condensed phase Hammett acidity functions instead. Our findings allow us to rank the AlCl4- anion as the weakest proton acceptor in use in IL studies, consistent with its role in the most conductive ILs.

6.
Proc Natl Acad Sci U S A ; 115(45): 11507-11512, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348773

RESUMO

Many natural silks produced by spiders and insects are unique materials in their exceptional toughness and tensile strength, while being lightweight and biodegradable-properties that are currently unparalleled in synthetic materials. Myriad approaches have been attempted to prepare artificial silks from recombinant spider silk spidroins but have each failed to achieve the advantageous properties of the natural material. This is because of an incomplete understanding of the in vivo spidroin-to-fiber spinning process and, particularly, because of a lack of knowledge of the true morphological nature of spidroin nanostructures in the precursor dope solution and the mechanisms by which these nanostructures transform into micrometer-scale silk fibers. Herein we determine the physical form of the natural spidroin precursor nanostructures stored within spider glands that seed the formation of their silks and reveal the fundamental structural transformations that occur during the initial stages of extrusion en route to fiber formation. Using a combination of solution phase diffusion NMR and cryogenic transmission electron microscopy (cryo-TEM), we reveal direct evidence that the concentrated spidroin proteins are stored in the silk glands of black widow spiders as complex, hierarchical nanoassemblies (∼300 nm diameter) that are composed of micellar subdomains, substructures that themselves are engaged in the initial nanoscale transformations that occur in response to shear. We find that the established micelle theory of silk fiber precursor storage is incomplete and that the first steps toward liquid crystalline organization during silk spinning involve the fibrillization of nanoscale hierarchical micelle subdomains.


Assuntos
Viúva Negra/química , Fibroínas/ultraestrutura , Nanopartículas/química , Seda/ultraestrutura , Animais , Viúva Negra/fisiologia , Fibroínas/biossíntese , Fibroínas/química , Cristais Líquidos/química , Cristais Líquidos/ultraestrutura , Micelas , Microdissecção , Nanopartículas/ultraestrutura , Transição de Fase , Seda/biossíntese , Seda/química
7.
Magn Reson Chem ; 56(11): 1074-1082, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29808623

RESUMO

Gold nanoparticles have attracted considerable attention in recent research because of their wide applications in various fields such as material science, electrical engineering, physical science, and biomedical engineering. Researchers have developed many methods for synthesizing different kinds of gold nanoparticles, where the sizes and surface chemistry of the nanoparticles are considered to be the two key factors. Traditionally, the sizes of nanoparticles are determined by electron microscopy whereas the surface chemistry is characterized by optical spectroscopies such as infrared spectroscopy and Raman spectroscopy. Compared with that, nuclear magnetic resonance (NMR) spectroscopy provides a more advanced and convenient way for size determination and surface chemistry investigations by combining one- and multiple-dimensional NMR spectroscopy and diffusion-order NMR spectroscopy. Here, we show a thorough study that NMR spectroscopy can be applied to characterize small thiol-protected gold nanoparticles, including size determination, surface chemistry investigation, and structural study. The results show that the nanoparticles' sizes determined by NMR agree well with transmission electron microscopy results. Furthermore, the ligand densities of nanoparticles were determined by quantitative NMR spectroscopy, and the structures of ligands capped on the surfaces were studied thoroughly by one- and multiple-dimensional NMR spectroscopy. In this work, we establish a general method for researchers to characterize nanostructures by using NMR spectroscopy.

8.
Biomacromolecules ; 19(3): 906-917, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29425447

RESUMO

Silkworm silk has attracted considerable attention in recent years due to its excellent mechanical properties, biocompatibility, and promising applications in biomedical sector. However, a clear understanding of the molecular structure and the relationship between the excellent mechanical properties and the silk protein sequences are still lacking. This study carries out a thorough comparative structural analysis of silk fibers of four silkworm species ( Bombyx mori, Antheraea pernyi, Samia cynthia ricini, and Antheraea assamensis). A combination of characterization techniques including scanning electron microscopy, mechanical test, synchrotron X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and NMR spectroscopy was applied to investigate the morphologies, mechanical properties, amino acid compositions, nanoscale organizations, and molecular structures of various silkworm silks. Furthermore, the structure-property relationship is discussed by correlating the molecular structural features of silks with their mechanical properties. The results show that a high content of ß-sheet structures and a high crystallinity would result in a high Young's modulus for silkworm silk fibers. Additionally, a low content of ß-sheet structures would result in a high extensibility.


Assuntos
Bombyx , Seda/química , Animais , Ressonância Magnética Nuclear Biomolecular , Especificidade da Espécie , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
9.
Sci Rep ; 7(1): 16244, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176555

RESUMO

Lithium-beryllium metal hydrides, which are structurally related to their parent compound, BeH2, offer the highest hydrogen storage capacity by weight among the metal hydrides (15.93 wt. % of hydrogen for LiBeH3). Challenging synthesis protocols have precluded conclusive determination of their crystallographic structure to date, but here we analyze directly the hydrogen hopping mechanisms in BeH2 and LiBeH3 using quasielastic neutron scattering, which is especially sensitive to single-particle dynamics of hydrogen. We find that, unlike its parent compound BeH2, lithium-beryllium hydride LiBeH3 exhibits a sharp increase in hydrogen mobility above 265 K, so dramatic that it can be viewed as melting of hydrogen sublattice. We perform comparative analysis of hydrogen jump mechanisms observed in BeH2 and LiBeH3 over a broad temperature range. As microscopic diffusivity of hydrogen is directly related to its macroscopic kinetics, a transition in LiBeH3 so close to ambient temperature may offer a straightforward and effective mechanism to influence hydrogen uptake and release in this very lightweight hydrogen storage compound.

10.
Phys Chem Chem Phys ; 19(24): 16151-16158, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28604860

RESUMO

Iridium oxide (IrOx) is one of the best water splitting electrocatalysts, but its active site details are not well known. As with all heterogeneous catalysts, a strategy for counting the number of active sites is not clear, and understanding their nature and structure is remarkably difficult. In this work, we performed a combined study using optical spectroscopy, magnetic resonance and electrochemistry to characterize the interaction of IrOx nanoparticles (NPs) with a probe molecule, catechol. The catalyst is heterogeneous given that the substrate is in a different phase, but behaves as a homogeneous catalyst from the point of view of electrochemistry since it remains in colloidal suspension. We find two types of binding sites: centers A which bind catechol irreversibly making up 21% of the surface, and centers B which bind catechol reversibly making up 79% of the surface. UV-vis absorption spectroscopy shows that the A sites are responsible for the characteristic blue color of the NPs. Electrochemical experiments indicate that the B sites are catalytically active and we give the number of active sites per nanoparticle. We conclude by performing a survey of ligands used in solar cell architectures and show which ones bind well to the surface and which ones inhibit the catalytic activity when doing so, presenting quantitative guidelines for the correct handling of IrOx nanoparticles during their incorporation into multifunctional solar energy harvesting architectures. We suggest ligands binding on the surface oxygen atoms allow for large bound ligand densities with no detrimental effect on the catalytic activity.

11.
ACS Appl Mater Interfaces ; 9(20): 17653-17661, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28452465

RESUMO

In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.

12.
Int J Mol Sci ; 17(12)2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918448

RESUMO

Solid-state NMR and molecular dynamics (MD) simulations are presented to help elucidate the molecular secondary structure of poly(Gly-Gly-X), which is one of the most common structural repetitive motifs found in orb-weaving dragline spider silk proteins. The combination of NMR and computational experiments provides insight into the molecular secondary structure of poly(Gly-Gly-X) segments and provides further support that these regions are disordered and primarily non-ß-sheet. Furthermore, the combination of NMR and MD simulations illustrate the possibility for several secondary structural elements in the poly(Gly-Gly-X) regions of dragline silks, including ß-turns, 310-helicies, and coil structures with a negligible population of α-helix observed.


Assuntos
Fibroínas/química , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Animais , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
13.
Chemistry ; 22(37): 13312-9, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27490171

RESUMO

The need for reliable means of ordering and quantifying the Lewis basicity of anions is discussed and the currently available methods are reviewed. Concluding that there is need for a simple impurity-insensitive tool, we have sought, and here describe, a new method using NMR spectroscopy of a weak base, a substituted urea, 1,3-dimethyl-2-imidazolidinone (DMI), as it is protonated by Brønsted acids of different strengths and characters. In all cases studied the product of protonation is a liquid (hence a protic ionic liquid). NMR spectroscopy detects changes in the electronic structure of the base upon interaction with the proton donors. As the proton-donating ability, that is, acidity, increases, there is a smooth but distinct transition from a hydrogen-bonded system (with no net proton transfer) to full ionicity. The liquid state of the samples and high concentration of nitrogen atoms, despite the very low natural abundance of its preferred NMR-active isotope ((15) N), make possible the acquisition of (15) N spectra in a relatively short time. These (15) N, along with (13) C, chemical shifts of the carbonyl atom, and their relative responses to protonation of the carbonyl oxygen, can be used as a means, sensitive to anion basicity and relatively insensitive to impurities, to sort anions in order of increasing hydrogen bond basicity. The order is found to be as follows: SbF6 (-) ClO4 (-) >FSO3 (-)

14.
Langmuir ; 32(36): 9335-41, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27537082

RESUMO

Cacti thrive in xeric environments through specialized water storage and collection tactics such as a shallow, widespread root system that maximizes rainwater absorption and spines adapted for fog droplet collection. However, in many cacti, the epidermis, not the spines, dominates the exterior surface area. Yet, little attention has been dedicated to studying interactions of the cactus epidermis with water drops. Surprisingly, the epidermis of plants in the genus Opuntia, also known as prickly pear cacti, has water-repelling characteristics. In this work, we report that surface properties of cladodes of 25 taxa of Opuntia grown in an arid Sonoran climate switch from water-repelling to superwetting under water impact over the span of a single season. We show that the old cladode surfaces are not superhydrophilic, but have nearly vanishing receding contact angle. We study water drop interactions with, as well as nano/microscale topology and chemistry of, the new and old cladodes of two Opuntia species and use this information to uncover the microscopic mechanism underlying this phenomenon. We demonstrate that composition of extracted wax and its contact angle do not change significantly with time. Instead, we show that the reported age dependent wetting behavior primarily stems from pinning of the receding contact line along multilayer surface microcracks in the epicuticular wax that expose the underlying highly hydrophilic layers.


Assuntos
Opuntia/fisiologia , Molhabilidade , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
15.
Langmuir ; 32(18): 4681-7, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27062909

RESUMO

Insects of the order Embioptera, known as embiopterans, embiids, or webspinners, weave silk fibers together into sheets to make shelters called galleries. In this study, we show that silk galleries produced by the embiopteran Antipaluria urichi exhibit a highly hydrophobic wetting state with high water adhesion macroscopically equivalent to the rose petal effect. Specifically, the silk sheets have advancing contact angles above 150°, but receding contact angle approaching 0°. The silk sheets consist of layered fiber bundles with single strands spaced by microscale gaps. Scanning and transmission electron microscopy (SEM, TEM) images of silk treated with organic solvent and gas chromatography mass spectrometry (GC-MS) of the organic extract support the presence of a lipid outer layer on the silk fibers. We use cryogenic SEM to demonstrate that water drops reside on only the first layer of the silk fibers. The area fraction of this sparse outer silk layers is 0.1 to 0.3, which according to the Cassie-Baxter equation yields an effective static contact angle of ∼130° even for a mildly hydrophobic lipid coating. Using high magnification optical imaging of the three phase contact line of a water droplet receding from the silk sheet, we show that the high adhesion of the drop stems from water pinning along bundles of multiple silk fibers. The bundles likely form when the drop contact line is pinned on individual fibers and pulls them together as it recedes. The dynamic reorganization of the silk sheets during the droplet movement leads to formation of "super-pinning sites" that give embiopteran silk one of the strongest adhesions to water of any natural hydrophobic surface.


Assuntos
Nanofibras/química , Neópteros , Seda/química , Molhabilidade , Animais , Fenômenos Mecânicos , Água/química
16.
J Phys Chem B ; 120(18): 4279-85, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27088704

RESUMO

The ionicity and transport properties of a series of diethylmethylamine (DEMA) based protic ionic liquids (PILs) were characterized, principally utilizing nuclear magnetic resonance (NMR) spectroscopy. PILs were formed via the protonation of DEMA by an array of acids spanning a large range of acidities. A correlation between the (1)H chemical shift of the exchangeable proton and the acidity of the acid used for the synthesis of the PIL was observed. The gas phase proton affinity of the acid was found to be a better predictor of the extent of proton transfer than the commonly used aqueous ΔpKa. Pulsed field gradient (PFG) NMR was used to determine the diffusivity of the exchangeable proton in a subset of the PILs. The exchangeable proton diffuses with the acid if the PIL is synthesized with a weak acid, and with the base if a strong acid is used. The ionicity of the PILs was characterized using the Walden analysis and by comparing to the ideal Nernst-Einstein conductivity predicted from the (1)H PFG-NMR results.

17.
Magn Reson Chem ; 54(3): 234-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26639792

RESUMO

The ligand capping of phosphonic acid functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of solution and solid-state (31) P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid-state (31) P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using (31) P liquid-state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' (31) P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid-state (31) P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd.

18.
Int J Biol Macromol ; 81: 171-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26226457

RESUMO

In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, ß-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc≈0.98. The size of the nanocrystallites was determined to be on average 2.5nm×3.3nm×3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa≈0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that ß-sheet nanocrystallites constitutes 40.0±1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18±1% of alanine, 60±2% glycine and 54±2% serine are incorporated into helical conformations.


Assuntos
Proteínas de Insetos/química , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína , Seda/química , Aranhas/química , Difração de Raios X , Sequência de Aminoácidos , Animais , Feminino , Dados de Sequência Molecular , Seda/ultraestrutura
19.
J Colloid Interface Sci ; 449: 332-40, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25724250

RESUMO

We synthesize monodispersed zwitterionic microgel (ZI-MG) particles that undergo an extensive, reversible change in volume in response to environmental stimuli such as pH and temperature. These aqueous ZI-MG dispersions exhibit a minimum hydrodynamic diameter value at an adjustable isoelectric point (IEP). In addition, the study elucidates the controlled uptake and release of ionic and nonionic surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the colloidal polymer networks are explained in terms of their binding interactions.

20.
RSC Adv ; 5(2): 1462-1473, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25621168

RESUMO

Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron x-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and restretched (from contracted) states. Changes in the orientation of ß-sheet nanocrystallites and the oriented component of the amorphous network have been determined from wide-angle x-ray diffraction patterns. While both the crystalline and amorphous components lose preferred orientation on wetting with water, the nano-crystallites regain their orientation on wet-restretching, whereas the oriented amorphous components only partially regain their orientation. Dragline major ampullate silks in both the species contract more than their minor ampullate silks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA