Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 39(44): 13390-5, 2000 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-11063576

RESUMO

Nucleoside modifications are important to the structure of all tRNAs and are critical to the function of some tRNA species. The transcript of human tRNA(Lys3)(UUU) with a UUU anticodon, and the corresponding anticodon stem and loop domain (ASL(Lys3)(UUU)), are unable to bind to poly-A programmed ribosomes. To determine if specific anticodon domain modified nucleosides of tRNA(Lys) species would restore ribosomal binding and also affect thermal stability, we chemically synthesized ASL(Lys) heptadecamers and site-specifically incorporated the anticodon domain modified nucleosides pseudouridine (Psi(39)), 5-methylaminomethyluridine (mnm(5)U(34)) and N6-threonylcarbamoyl-adenosine (t(6)A(37)). Incorporation of t(6)A(37) and mnm(5)U(34) contributed structure to the anticodon loop, apparent by increases in DeltaS, and significantly enhanced the ability of ASL(Lys3)(UUU) to bind poly-A programmed ribosomes. Neither ASL(Lys3)(UUU)-t(6)A(37) nor ASL(Lys3)(UUU)-mnm(5)U(34) bound AAG programmed ribosomes. Only the presence of both t(6)A(37) and mnm(5)U(34) enabled ASL(Lys3)(UUU) to bind AAG programmed ribosomes, as well as increased its affinity for poly-A programmed ribosomes to the level of native Escherichia coli tRNA(Lys). The completely unmodified anticodon stem and loop of human tRNA(Lys1,2)(CUU) with a wobble position-34 C bound AAG, but did not wobble to AAA, even when the ASL was modified with t(6)A(37). The data suggest that tRNA(Lys)(UUU) species require anticodon domain modifications in the loop to impart an ordered structure to the anticodon for ribosomal binding to AAA and require a combination of modified nucleosides to bind AAG.


Assuntos
Adenosina/análogos & derivados , Anticódon/química , Conformação de Ácido Nucleico , Pseudouridina/química , RNA de Transferência de Lisina/química , Uridina/análogos & derivados , Adenosina/química , Sítios de Ligação , Humanos , Ligação Proteica , RNA Ribossômico 16S/química , Proteínas Ribossômicas/química , Relação Estrutura-Atividade , Termodinâmica , Uridina/química
2.
Nucleic Acids Res ; 28(6): 1374-80, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10684932

RESUMO

The TPsiC stem and loop (TSL) of tRNA contains highly conserved nucleoside modifications, m(5)C(49), T(54), Psi(55)and m(1)A(58). U(54)is methylated to m(5)U (T) by m(5)U(54)methyltransferase (RUMT); A(58)is methylated to m(1)A by m(1)A(58)tRNA methyltransferase (RAMT). RUMT recognizes and methylates a minimal TSL heptadecamer and RAMT has previously been reported to recognize and methylate the 3'-half of the tRNA molecule. We report that RAMT can recognize and methylate a TSL heptadecamer. To better understand the sensitivity of RAMT and RUMT to TSL conformation, we have designed and synthesized variously modified TSL constructs with altered local conformations and stabilities. TSLs were synthesized with natural modifications (T(54)and Psi(55)), naturally occurring modifications at unnatural positions (m(5)C(60)), altered sugar puckers (dU(54)and/or dU(55)) or with disrupted U-turn interactions (m(1)Psi(55)or m(1)m(3)Psi(55)). The unmodified heptadecamer TSL was a substrate of both RAMT and RUMT. The presence of T(54)increased thermal stability of the TSL and dramatically reduced RAMT activity toward the substrate. Local conformation around U(54)was found to be an important determinant for the activities of both RAMT and RUMT.


Assuntos
Escherichia coli/enzimologia , Conformação de Ácido Nucleico , RNA de Transferência de Fenilalanina/metabolismo , Tetrahymena pyriformis/enzimologia , tRNA Metiltransferases/metabolismo , Animais , Cinética , Espectroscopia de Ressonância Magnética , Metilação , Nucleosídeos/química , Nucleosídeos/genética , Nucleosídeos/metabolismo , Estabilidade de RNA , RNA de Transferência de Fenilalanina/síntese química , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/genética , Especificidade por Substrato , Temperatura , Termodinâmica , Leveduras/genética
3.
Nucleic Acids Res ; 27(17): 3543-9, 1999 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10446245

RESUMO

Pseudouridine at position 39 (Psi(39)) of tRNA's anticodon stem and loop domain (ASL) is highly conserved. To determine the physicochemical contributions of Psi(39)to the ASL and to relate these properties to tRNA function in translation, we synthesized the unmodified yeast tRNA(Phe)ASL and ASLs with various derivatives of U(39)and Psi(39). Psi(39)increased the thermal stability of the ASL (Delta T (m)= 1.3 +/- 0.5 degrees C), but did not significantly affect ribosomal binding ( K (d)= 229 +/- 29 nM) compared to that of the unmodified ASL (K (d)= 197 +/- 58 nM). The ASL-Psi(39)P-site fingerprint on the 30S ribosomal subunit was similar to that of the unmodified ASL. The stability, ribosome binding and fingerprint of the ASL with m(1)Psi(39)were comparable to that of the ASL with Psi(39). Thus, the contribution of Psi(39)to ASL stability is not related to N1-H hydrogen bonding, but probably is due to the nucleoside's ability to improve base stacking compared to U. In contrast, substitutions of m(3)Psi(39), the isosteric m(3)U(39)and m(1)m(3)Psi(39)destabilized the ASL by disrupting the A(31)-U(39)base pair in the stem, as confirmed by NMR. N3-methylations of both U and Psi dramatically decreased ribosomal binding ( K (d)= 1060 +/- 189 to 1283 +/- 258 nM). Thus, canonical base pairing of Psi(39)to A(31)through N3-H is important to structure, stability and ribosome binding, whereas the increased stability and the N1-proton afforded by modification of U(39)to Psi(39)may have biological roles other than tRNA's binding to the ribosomal P-site.


Assuntos
Prótons , Pseudouridina/química , RNA de Transferência de Fenilalanina/química , Anticódon/química , Genes Fúngicos/genética , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , RNA Ribossômico 16S/química , Ribossomos/química , Relação Estrutura-Atividade , Temperatura , Termodinâmica , Uridina/química , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...