Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biophys Chem ; 195: 43-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194277

RESUMO

Hutchinson-Gilford progeria syndrome is a premature aging disorder associated with the expression of ∆50 lamin A (∆50LA), a mutant form of the nuclear structural protein lamin A (LA). ∆50LA is missing 50 amino acids from the tail domain and retains a C-terminal farnesyl group that is cleaved from the wild-type LA. Many of the cellular pathologies of HGPS are thought to be a consequence of protein-membrane association mediated by the retained farnesyl group. To better characterize the protein-membrane interface, we quantified binding of purified recombinant ∆50LA tail domain (∆50LA-TD) to tethered bilayer membranes composed of phosphatidylserine and phosphocholine using surface plasmon resonance. Farnesylated ∆50LA-TD binds to the membrane interface only in the presence of Ca(2+) or Mg(2+) at physiological ionic strength. At extremely low ionic strength, both the farnesylated and non-farnesylated forms of ∆50LA-TD bind to the membrane surface in amounts that exceed those expected for a densely packed protein monolayer. Interestingly, the wild-type LA-TD with no farnesylation also associates with membranes at low ionic strength but forms only a single layer. We suggest that electrostatic interactions are mediated by charge clusters with a net positive charge that we calculate on the surface of the LA-TDs. These studies suggest that the accumulation of ∆50LA at the inner nuclear membrane observed in cells is due to a combination of aggregation and membrane association rather than simple membrane binding; electrostatics plays an important role in mediating this association.


Assuntos
Lamina Tipo A/química , Progéria/patologia , Cálcio/química , Humanos , Íons/química , Lamina Tipo A/metabolismo , Luz , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Magnésio/química , Simulação de Dinâmica Molecular , Concentração Osmolar , Fosfatidilserinas/química , Fosforilcolina/química , Progéria/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície
2.
Phys Chem Chem Phys ; 16(21): 10157-68, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24595605

RESUMO

Neutron reflectivity shows that fatted (F-HSA) and defatted (DF-HSA) versions of human serum albumin behave differently in their interaction with silica nanoparticles premixed in buffer solutions although these proteins have close to the same surface excess when the silica is absent. In both cases a silica containing film is quickly established at the air-water interface. This film is stable for F-HSA at all relative protein-silica concentrations measured. This behaviour has been verified for two small silica nanoparticle radii (42 Å and 48 Å). Contrast variation and co-refinement have been used to find the film composition for the F-HSA-silica system. The film structure changes with protein concentration only for the DF-HSA-silica system. The different behaviour of the two proteins is interpreted as a combination of three factors: increased structural stability of F-HSA induced by the fatty acid ligand, differences in the electrostatic interactions, and the higher propensity of defatted albumin to self-aggregate. The interfacial structures of the proteins alone in buffer are also reported and discussed.


Assuntos
Ácidos Graxos/metabolismo , Nanopartículas , Albumina Sérica/metabolismo , Dióxido de Silício/química , Humanos , Ligantes , Ligação Proteica , Albumina Sérica/química
3.
J Nanobiotechnology ; 9: 45, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21961562

RESUMO

BACKGROUND: Carbon nanotubes are increasingly being tested for use in cellular applications. Determining the mode of entry is essential to control and regulate specific interactions with cells, to understand toxicological effects of nanotubes, and to develop nanotube-based cellular technologies. We investigated cellular uptake of Pluronic copolymer-stabilized, purified ~145 nm long single wall carbon nanotubes (SWCNTs) through a series of complementary cellular, cell-mimetic, and in vitro model membrane experiments. RESULTS: SWCNTs localized within fluorescently labeled endosomes, and confocal Raman spectroscopy showed a dramatic reduction in SWCNT uptake into cells at 4°C compared with 37°C. These data suggest energy-dependent endocytosis, as shown previously. We also examined the possibility for non-specific physical penetration of SWCNTs through the plasma membrane. Electrochemical impedance spectroscopy and Langmuir monolayer film balance measurements showed that Pluronic-stabilized SWCNTs associated with membranes but did not possess sufficient insertion energy to penetrate through the membrane. SWCNTs associated with vesicles made from plasma membranes but did not rupture the vesicles. CONCLUSIONS: These measurements, combined, demonstrate that Pluronic-stabilized SWCNTs only enter cells via energy-dependent endocytosis, and association of SWCNTs to membrane likely increases uptake.


Assuntos
Endossomos/metabolismo , Nanotubos de Carbono/análise , Animais , Linhagem Celular , Espectroscopia Dielétrica , Endocitose , Humanos , Camundongos , Microscopia Confocal , Nanotubos de Carbono/química , Poloxâmero/química , Análise Espectral Raman , Temperatura , Termodinâmica , Lipossomas Unilamelares/química
4.
J Phys Chem B ; 115(19): 5775-84, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21500797

RESUMO

Large changes in the rheology of high-internal phase aqueous-in-oil emulsions (HIPEs) using an oil-soluble polyisobutylene-based primary surfactant (PIBSA) are provoked by very small quantities of water-soluble polyamide-based cosurfactants (PAM with C(12), C(14), and C(16) tails). The structural origin of this was studied using small-angle neutron scattering (SANS) from sheared emulsions, with simultaneous in situ rheology measurements. The PAM drastically lowers the droplet-oil interfacial tension by displacing PIBSA, causing large droplet deformation under shear and much lowered emulsion yield stress. With PAM, the surfactant monolayer at the droplet surface becomes more responsive to droplet shape change and redistributes in response to shear which the PIBSA-only system does not. Although it is oil-insoluble, PAM also reaches the nanoscale PIBSA micelles in the oil phase, changing micelle size and content in ways predictable from the hydrophilicity of the different PAMs. PAM does not, however, strongly affect the viscosities at high shear rates; shear thinning and thickening are unaffected. Droplet size, droplet-droplet flattening, and linkage determine the viscosities observed, more so than droplet-oil interfacial tension. We infer from this that the droplet motion under shear does not involve much transient droplet deformation as the droplets move by each other.

5.
J Colloid Interface Sci ; 349(2): 544-53, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20573351

RESUMO

The changes in structure of high internal phase emulsions at low concentrations and at elevated temperature are reported for comparison with the same emulsions under conditions well away from instability. Small angle neutron scattering measurements on aqueous ammonium nitrate droplets dispersed in hexadecane and stabilized by very small quantities of a polyisobutylene-based surfactant (PIBSA) as well as related inverse micellar solutions in hexadecane, have been made as a function of temperature and surfactant concentration. Experimental conditions here favour larger and more deformable droplets than in previous studies. Besides the expected micelles and adsorbed surfactant, planar bilayers of micron lateral extent between touching droplets cover 20% of the droplet surface. Another difference from previous experiments is that the oil phase in the emulsions, and corresponding inverse micellar solutions are different in micellar radii and composition. The differences, and changes with surfactant concentration and temperature, are attributed to fractionation of the polydisperse PIBSA in the emulsions, but not the inverse micellar solutions. At low PIBSA concentration and high temperature the SANS shows emulsion decomposing into separate oil and aqueous phases. This occurs when the micelle concentration reaches a very small but measurable value. The inverse micelles may suppress by steric action long wavelength unstable capillary waves in the bilayers. Depletion repulsion forces here have a minor role in the emulsion stabilization.

6.
J Phys Chem B ; 114(10): 3500-9, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20180579

RESUMO

High-internal phase aqueous-in-oil emulsions of two surfactant concentrations were studied using small-angle neutron scattering (SANS) and simultaneous in situ rheology measurements. They contained a continuous oil phase with differing amounts of hexadecane and d-hexadecane (for contrast matching experiments), a deuteroaqueous phase almost saturated with ammonium nitrate, and an oil-soluble stabilizing polyisobutylene-based surfactant. The emulsions' macroscopic rheological behavior has been related to quantify changes in microscale and nanoscale structures observed in the SANS measurements. The emulsions are rheologically unexceptional and show, inter alia, refinement to higher viscosity after high shear, and shear thinning. These are explained by changes observed in the SANS model parameters. Shear thinning is explained by SANS-observed shear disruption of interdroplet bilayer links, causing deflocculation to more spherical, less linked, aqueous droplets. Refinement to higher viscosity is accompanied by droplet size reduction and loss of surfactant from the oil continuous phase. Refinement occurs because of shear-induced droplet anisotropy, which we have also observed in the SANS experiment. This observed anisotropy and the emulsion refinement cannot be reproduced by either isolated molecule or mean-field models but require a more detailed consideration of interdroplet forces in the sheared fluid.

7.
Langmuir ; 22(17): 7203-7, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16893216

RESUMO

The thermodynamic properties of n-hexane adsorption on MgO(100) were determined using high-resolution volumetric adsorption isotherms in the temperature range 195-255 K. Two distinct layering transitions are observed in the isotherms. The isotherms are used to calculate the two-dimensional compressibility, the differential enthalpy and entropy, the heat of adsorption, and the isosteric heat of adsorption. Neutron Diffraction is used to identify where melting of the n-hexane monolayer takes place.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...