Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Vis Exp ; (201)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38047559

RESUMO

One of the major pests of potato Solanum tuberosum L. in the temperate zone is the insect Colorado potato beetle (CPB). Most studies on the immunity and diseases of the CPB are conducted during active feeding stages. Nonetheless, there are fewer studies on resting stages, although these beetles spend most of their life cycle in a state of winter diapause (hibernation). In this work, a method for investigating CPB hibernation under natural conditions was developed and tested, offering an opportunity to collect a sufficient number of individuals in winter. In this article, CPB survival was assessed, and infectious agents at different stages of hibernation were identified. CPB mortality increased during the hibernation, reaching a maximum in April-May. Entomopathogenic fungi (Beauveria, Isaria, and Lecanicillium) and bacteria Bacillus, Sphingobacterium, Peribacillus, Pseudomonas, and Serratia were isolated from the dead insects. The survival rate of the beetles for the entire hibernation period was 61%. No frozen or desiccated beetles were found, indicating the success of the presented method.


Assuntos
Besouros , Hibernação , Solanum tuberosum , Animais , Larva , Colorado
2.
Insects ; 13(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555078

RESUMO

Different developmental stages of insects may be dissimilar in immunity functioning. Additionally, the stages often inhabit diverse environments with specific microbial communities. In the Colorado potato beetle, a strong increase in resistance to entomopathogenic fungi is observed during the intermolt period of last-instar larvae, but mechanisms of this change are insufficiently understood. We studied changes in the expression of immunity- and stress-related genes in the fat body and integument during this intermolt period by quantitative PCR. By the end of the instar, there was upregulation of transcription factors of Toll, IMD, and Jak-Stat pathways as well as genes encoding metalloprotease inhibitors, odorant-binding proteins, and heat shock proteins. Nonetheless, the expression of gene LdRBLk encoding ß-lectin did not change during this period. Most of the aforementioned genes were upregulated in response to Metarhizium robertsii topical infection. The expression alterations were more pronounced in recently molted larvae than in finishing feeding larvae and in the integument compared to the fat body. We believe that upregulation of immune-system- and stress-related genes at the end of the intermolt period is an adaptation caused by migration of larvae into soil, where the probability of encountering entomopathogenic fungi is high.

3.
Pest Manag Sci ; 78(9): 3823-3835, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35238478

RESUMO

BACKGROUND: We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS: Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5×) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5×) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4×) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4×) after 24 h and increased (1.1-1.5×) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION: The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt. © 2022 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Besouros , Solanum tuberosum , Animais , Citrobacter freundii , Larva
4.
PLoS One ; 16(3): e0248704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760838

RESUMO

Gut physiology and the bacterial community play crucial roles in insect susceptibility to infections and insecticides. Interactions among Colorado potato beetle Leptinotarsa decemlineata (Say), its bacterial associates, pathogens and xenobiotics have been insufficiently studied. In this paper, we present our study of the survival, midgut histopathology, activity of digestive enzymes and bacterial communities of L. decemlineata larvae under the influence of Bacillus thuringiensis var. tenebrionis (morrissoni) (Bt), a natural complex of avermectins and a combination of both agents. Moreover, we estimated the impact of culturable enterobacteria on the susceptibility of the larvae to Bt and avermectins. An additive effect between Bt and avermectins was established regarding the mortality of the larvae. Both agents led to the destruction of midgut tissues, a decrease in the activity of alpha-amylases and alkaline proteinases, a decrease in the Spiroplasma leptinotarsae relative abundance and a strong elevation of Enterobacteriaceae abundance in the midgut. Moreover, an elevation of the enterobacterial CFU count was observed under the influence of Bt and avermectins, and the greatest enhancement was observed after combined treatment. Insects pretreated with antibiotics were less susceptible to Bt and avermectins, but reintroduction of the predominant enterobacteria Enterobacter ludwigii, Citrobacter freundii and Serratia marcescens increased susceptibility to both agents. We suggest that enterobacteria play an important role in the acceleration of Bt infection and avermectin toxicoses in L. decemlineata and that the additive effect between Bt and avermectin may be mediated by alterations in the bacterial community.


Assuntos
Bacillus thuringiensis/fisiologia , Besouros/microbiologia , Resistência a Inseticidas , Inseticidas/metabolismo , Microbiota/efeitos dos fármacos , Controle Biológico de Vetores/métodos , Animais
5.
Microb Pathog ; 141: 103995, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31988006

RESUMO

Entomopathogenic fungi form different strategies of interaction with their insect hosts. The influence of fungal infection on insect physiology has mainly been studied for generalists (Metarhizium, Beauveria), but studies of specialized teleomorphic species, such as Cordyceps militaris, are rare. We conducted a comparative analysis of the immune reactions of the wax moth Galleria mellonella after injection with blastospores of C. militaris (Cm) and Metarhizium robertsii (Mr) in two doses (400 and 4000 per larva). Cm-injected insects died more slowly and were more predisposed to bacterial infections than Mr-injected insects. It was shown that Cm infection led to a predominance of necrotic death of hemocytes, whereas Mr infection led to apoptotic death of cells. Cm-infected insects produced more dopamine and reactive oxygen species compared to Mr-infected insects. Moreover, Cm injection led to weak inhibition of phenoloxidase activity and slight enhancement of detoxification enzymes compared to Mr-injected insects. Blastospores of Cm that were cultivated in artificial medium (in vitro) and proliferated in wax moth hemolymph (in vivo) were characterized by equal intensity of fluorescence after staining with Calcofluor White. In contrast, Mr blastospores that proliferated in the wax moth had decreased fluorescence intensity compared to Mr blastospores grown in medium. The results showed that insects combat Cm infection more actively than Mr infection. We suggest that Cm uses fewer universal tools of killing than Mr, and these tools are available because of specific interactions of Cm with hosts and adaptation to certain host developmental stages.


Assuntos
Hypocreales , Mariposas/microbiologia , Micoses/imunologia , Animais , Apoptose , Cordyceps/imunologia , Dopamina/metabolismo , Hemócitos/metabolismo , Hemócitos/microbiologia , Interações Hospedeiro-Patógeno , Hypocreales/imunologia , Hypocreales/patogenicidade , Imunidade , Larva/imunologia , Larva/microbiologia , Metarhizium/imunologia , Monofenol Mono-Oxigenase/metabolismo , Mariposas/imunologia , Necrose , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/imunologia
6.
Fungal Biol ; 123(12): 927-935, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31733735

RESUMO

Strains of entomopathogenic fungi may have substantial differences in their final stages of mycosis. Insect cadavers are usually overgrown with mycelium after colonization of the insect body, but in many cases, bacterial decomposition of the colonized hosts occurs. We used two Metarhizium robertsii strains in the work: Mak-1 (cadavers become overgrown with mycelium and conidia) and P-72 (cadavers decay after fungal colonization). We conducted a comparative analysis of gut and cadaver microbiota in Colorado potato beetle larvae using 16S rRNA gene sequencing after infection with these strains. In addition, we estimated the content of different forms of nitrogen in cadavers and the influence of cadavers on the growth of Solanum lycopersicum on sand substrates under laboratory conditions. It was shown that infections did not lead to a significant shift in the midgut bacterial communities of infected insects compared to those of untreated insects. Importantly, bacterial communities were similar in both types of cadaver, with predominantly enterobacteria. Decomposing cadavers (P-72) were characterized by increased nitrate and ammonium, and they had a stronger growth-promoting effect on plants compared to cadavers overgrown with mycelium and conidia (Mak-1). We also estimated the colonization and growth of plants after treatment with conidia of both strains cultivated on artificial medium. Both cultures successfully colonized plants, but strain P-72 showed stronger growth promotion than Mak-1. We propose that the use of deviant strains that are unable to sporulate on cadavers leads to a faster (though only passive) flow of nitrogen from killed insects to plants.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Besouros/microbiologia , Microbiota , Mudanças Depois da Morte , Amônia/análise , Animais , Bactérias/classificação , Bactérias/genética , Cadáver , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Metarhizium/crescimento & desenvolvimento , Nitratos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
PeerJ ; 7: e7931, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667017

RESUMO

Combination of insect pathogenic fungi and microbial metabolites is a prospective method for mosquito control. The effect of the entomopathogenic fungus Metarhizium robertsii J.F. Bischoff, S.A. Rehner & Humber and avermectins on the survival and physiological parameters of Aedes aegypti (Linnaeus, 1762) larvae (dopamine concentration, glutathione S-transferase (GST), nonspecific esterases (EST), acid proteases, lysozyme-like, phenoloxidase (PO) activities) was studied. It is shown that the combination of these agents leads to a synergistic effect on mosquito mortality. Colonization of Ae. aegypti larvae by hyphal bodies following water inoculation with conidia is shown for the first time. The larvae affected by fungi are characterized by a decrease in PO and dopamine levels. In the initial stages of toxicosis and/or fungal infection (12 h posttreatment), increases in the activity of insect detoxifying enzymes (GST and EST) and acid proteases are observed after monotreatments, and these increases are suppressed after combined treatment with the fungus and avermectins. Lysozyme-like activity is also most strongly suppressed under combined treatment with the fungus and avermectins in the early stages posttreatment (12 h). Forty-eight hours posttreatment, we observe increases in GST, EST, acid proteases, and lysozyme-like activities under the influence of the fungus and/or avermectins. The larvae affected by avermectins accumulate lower levels of conidia than avermectin-free larvae. On the other hand, a burst of bacterial CFUs is observed under treatment with both the fungus and avermectins. We suggest that disturbance of the responses of the immune and detoxifying systems under the combined treatment and the development of opportunistic bacteria may be among the causes of the synergistic effect.

8.
J Insect Physiol ; 116: 106-117, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077710

RESUMO

Susceptibility to the fungus Metarhizium robertsii and changes in host defences were evaluated in different stages of the intermoult period (4-6 h, 34-36 h and 84-86 h post moult in IV larval instars) of the Colorado potato beetle. A significant thickening of the cuticle during larval growth was accompanied by decreases in cuticle melanization, phenoloxidase activity and epicuticular hydrocarbon contents (C28-C32). At the same time, a decrease in the conidial adhesion rate and an increase in resistance to the fungus were observed. In addition, we recorded significant elevation of the encapsulation rate and total haemocyte counts in the haemolymph during the specified period. The activity of detoxification enzymes decreased in the haemolymph but increased in the fat body during larval growth. No significant differences in the fatty acid content in the epicuticle were observed. The role of developmental disorders in susceptibility to entomopathogenic fungi is also discussed.


Assuntos
Antibiose , Besouros/fisiologia , Metarhizium/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Besouros/microbiologia , Corpo Adiposo/enzimologia , Corpo Adiposo/crescimento & desenvolvimento , Hemolinfa/enzimologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia
9.
Pest Manag Sci ; 74(3): 598-606, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28945317

RESUMO

BACKGROUND: The search for compounds that interact synergistically with entomopathogenic fungi is aimed at enhancing the efficacy and stability of biological products against pest insects, for example, against the Colorado potato beetle (CPB). We hypothesized that fluorine-containing derivatives of usnic acid (FUA) might be candidates for the development of multicomponent bio-insecticides. The aim of this study was to analyze the co-influence of FUA and Beauveria bassiana on the survival and immune-physiological reactions of CPB larvae. RESULTS: Synergy between FUA and B. bassiana was observed after treatment of second, third and fourth larvae instars under laboratory conditions. Furthermore, synergy was observed in field trials in continental climate conditions in southeastern Kazakhstan. In a field experiment, the median lethal time was shortened three-fold, and cumulative mortality for 15 days increased by 36% in the combined treatment compared with a fungal infection alone. FUA treatment delayed larval development, decreased the total hemocyte count, and increased both the phenoloxidase activity in integuments and the detoxification enzyme rate in hemolymph. A combined treatment with fungus and FUA led to increases in the aforementioned changes. CONCLUSION: Toxicosis caused by FUA provides a stable synergistic effect between FUA and B. bassiana. The combination can be promising for the development of highly efficient products against CPB. © 2017 Society of Chemical Industry.


Assuntos
Beauveria , Benzofuranos , Besouros , Flúor , Controle de Insetos , Inseticidas , Exoesqueleto/efeitos dos fármacos , Exoesqueleto/imunologia , Animais , Besouros/crescimento & desenvolvimento , Hemolinfa/efeitos dos fármacos , Hemolinfa/imunologia , Imunidade Inata/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Longevidade/efeitos dos fármacos , Controle Biológico de Vetores
10.
Insect Sci ; 25(4): 643-654, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28296161

RESUMO

Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with fungal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n-hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor.


Assuntos
Beauveria , Mariposas/microbiologia , Mariposas/parasitologia , Vespas/fisiologia , Animais , Comportamento Animal , Feminino , Hemolinfa/imunologia , Insetos Vetores/microbiologia , Tegumento Comum , Larva/imunologia , Larva/microbiologia , Larva/parasitologia , Monofenol Mono-Oxigenase/metabolismo , Mariposas/enzimologia , Mariposas/imunologia , Oviposição , Vespas/crescimento & desenvolvimento , Vespas/microbiologia
11.
Insect Sci ; 25(3): 454-466, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27900825

RESUMO

This study examines how the dynamics of fungus-insect interactions can be modulated by temperature. The wax moth, Galleria mellonella, is a well-studied and important model insect whose larvae in the wild develop optimally at around 34 °C in beehives. However, surprisingly little research on wax moths has been conducted at relevant temperatures. In this study, the entomopathogenic fungus Metarhizium robertsii inflicted rapid and substantial mortality on wax moth larvae maintained at a constant temperature of 24 °C, but at 34 °C a 10 fold higher dose was required to achieve an equivalent mortality. The cooler temperature favored fungal pathogenicity, with condial adhesion to the cuticle, germination and hemocoel invasion all significantly enhanced at 24 °C, compared with 34 °C. The wax moth larvae immune responses altered with the temperature, and with the infective dose of the fungus. Enzyme-based immune defenses (lysozyme and phenoloxidase) exhibited enhanced activity at the warmer temperature. A dramatic upregulation in the basal expression of galiomicin and gallerimycin was triggered by cooling, and this was augmented in the presence of the fungus. Profiling of the predominant insect epicuticular fatty acids revealed a 4-7 fold increase in palmetic, oleic and linoleic acids in larvae maintained at 24 °C compared with those at 34 °C, but these failed to exert fungistatic effects on topically applied fungus. This study demonstrates the importance of choosing environmental conditions relevant to the habitat of the insect host when determining the dynamics and outcome of insect/fungus interactions, and has particular significance for the application of entomopathogens as biocontrol agents.


Assuntos
Interações Hospedeiro-Patógeno , Metarhizium/fisiologia , Mariposas/microbiologia , Controle Biológico de Vetores , Animais , Defensinas/metabolismo , Ácidos Graxos/fisiologia , Monofenol Mono-Oxigenase/metabolismo , Muramidase/metabolismo , Esporos Fúngicos/fisiologia
12.
J Insect Physiol ; 96: 14-20, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27751890

RESUMO

The synergistic effect between the entomopathogenic fungus Metarhizium robertsii and a sublethal dose of the bacterium Bacillus thuringiensis ssp. morrisoni var. tenebrionis was studied in terms of immune defense reactions and detoxification system activity of the Colorado potato beetle, Leptinotarsa decemlineata, fourth instar larvae. Bacterial infection led to more rapid germination of fungal conidia on integuments. We found a significant decrease of cellular immunity parameters, including total hemocyte count and encapsulation response, under the influence of bacteria. Phenoloxidase activity in integuments was increased under bacteriosis, mycosis and combined infection compared to controls. However, phenoloxidase activity in the hemolymph was enhanced under bacteriosis alone, and it was decreased under combined infection. Activation of both nonspecific esterases and glutathione-S-transferases in the hemolymph was shown at the first day of mycosis and third day of bacteriosis. However, inhibition of detoxification enzymes was detected under combined infection. The suppression of cellular immunity and detoxification reactions in Colorado potato beetle larvae with a sublethal dose of bacteria is discussed as a reason for synergy between B. thuringiensis and M. robertsii.


Assuntos
Bacillus thuringiensis/fisiologia , Besouros/imunologia , Besouros/microbiologia , Metarhizium/fisiologia , Animais , Besouros/enzimologia , Besouros/crescimento & desenvolvimento , Hemócitos/citologia , Hemolinfa/química , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/microbiologia , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Controle Biológico de Vetores
13.
J Invertebr Pathol ; 140: 8-15, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27546865

RESUMO

The interaction between the entomopathogenic fungus Metarhizium robertsii and natural avermectin metabolites of the actinomycete Streptomyces avermitilis were investigated on Colorado potato beetle larvae. A synergy in the mortality of larvae was detected after simultaneous treatment with half-lethal doses of avermectins (commercial name actarophit) 0.005% and fungus (5×105conidia/ml). The treatment with avermectins led to rapid fungal colonization of the hemolymph. The defense strategies of insects infected by fungus and treated with avermectins and untreated insects were compared to investigate the mechanisms of this synergy. We have shown an increase in hemocytes, especially immunocompetent cells - plasmatocytes and granular cells in the initial stages of mycosis (third day post inoculation). In contrast, avermectins suppressed cellular immunity in hemolymph. Specifically, avermectins dramatically decreased the count of granular cells in larvae infected and uninfected with fungus. Apoptosis inducement and hemocyte necrosis under the influence of avermectins has been shown in vitro as one of the possible reasons for hemocyte mortality. In addition, avermectins enhanced the activity of phenoloxidases in integuments and hemolymph and increased the activity of glutathione-S-transferases activity in the fat body and hemolymph of infected and uninfected larvae, thereby intensifying the development of fungal infection by M. robertsii in Colorado potato beetle larvae. The combination of fungal infection and avermectins constitutes a new perspective for developing multicomponent bioinsecticides.


Assuntos
Besouros/parasitologia , Inseticidas , Ivermectina/análogos & derivados , Controle Biológico de Vetores/métodos , Animais , Larva , Metarhizium
14.
PLoS One ; 8(4): e60248, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23560083

RESUMO

Microevolutionary adaptations and mechanisms of fungal pathogen resistance were explored in a melanic population of the Greater wax moth, Galleria mellonella. Under constant selective pressure from the insect pathogenic fungus Beauveria bassiana, 25(th) generation larvae exhibited significantly enhanced resistance, which was specific to this pathogen and not to another insect pathogenic fungus, Metarhizium anisopliae. Defense and stress management strategies of selected (resistant) and non-selected (susceptible) insect lines were compared to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. We hypothesize that the insects developed a transgenerationally primed resistance to the fungus B. bassiana, a costly trait that was achieved not by compromising life-history traits but rather by prioritizing and re-allocating pathogen-species-specific augmentations to integumental front-line defenses that are most likely to be encountered by invading fungi. Specifically during B. bassiana infection, systemic immune defenses are suppressed in favour of a more limited but targeted repertoire of enhanced responses in the cuticle and epidermis of the integument (e.g. expression of the fungal enzyme inhibitor IMPI, and cuticular phenoloxidase activity). A range of putative stress-management factors (e.g. antioxidants) is also activated during the specific response of selected insects to B. bassiana but not M. anisopliae. This too occurs primarily in the integument, and probably contributes to antifungal defense and/or helps ameliorate the damage inflicted by the fungus or the host's own immune responses.


Assuntos
Beauveria/fisiologia , Proteínas de Insetos/imunologia , Larva/imunologia , Metarhizium/fisiologia , Mariposas/imunologia , Característica Quantitativa Herdável , Animais , Antioxidantes/metabolismo , Beauveria/patogenicidade , Inibidores Enzimáticos/imunologia , Inibidores Enzimáticos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Insetos/genética , Tegumento Comum/microbiologia , Tegumento Comum/fisiologia , Larva/genética , Larva/metabolismo , Larva/microbiologia , Metarhizium/patogenicidade , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/imunologia , Mariposas/genética , Mariposas/metabolismo , Mariposas/microbiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...