Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 15(9): 1953-1959, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30693357

RESUMO

The contact of a hydrogel during the rotational shearing on a glass surface in concentrated polymer solution was observed in situ. Dynamic contact patterns that rotate in-phase with the rotational shearing of the gel were observed for the first time. The contact patterns with a periodicity in the circumferential direction appeared and became fine with the shearing time. The patterns appeared more quickly at an elevated sliding velocity, polymer concentration, and normal pressure. Furthermore, the softness of the gel also substantially influenced the characteristics of the patterns. The pattern formation was discussed in terms of the non-linear rheology of the polymer solution at the rotational soft interface.

2.
Soft Matter ; 10(30): 5589-96, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24962139

RESUMO

Direct observation of hydrogel contact with a solid surface in water is indispensable for understanding the friction, lubrication, and adhesion of hydrogels under water. However, this is a difficult task since the refractive index of hydrogels is very close to that of water. In this paper, we present a novel method to in situ observe the macroscopic contact of hydrogels with a solid surface based on the principle of critical refraction. This method was applied to investigate the sliding friction of a polyacrylamide (PAAm) hydrogel with glass by using a strain-controlled parallel-plate rheometer. The study revealed that when the compressive pressure is not very high, the hydrogel forms a heterogeneous contact with the glass, and a macro-scale water drop is trapped at the soft interface. The pre-trapped water spreads over the interface to decrease the contact area with the increase in sliding velocity, which dramatically reduces the friction of the hydrogel. The study also revealed that this heterogeneous contact is the reason for the poor reproducibility of hydrogel friction that has been often observed in previous studies. Under the condition of homogeneous full contact, the molecular origin of hydrogel friction in water is discussed. This study highlights the importance of direct interfacial observation to reveal the friction mechanism of hydrogels.

3.
Soft Matter ; 10(18): 3192-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24718724

RESUMO

This study investigated the effect of hydrogel surface roughness on its sliding friction against a solid substrate having modestly adhesive interaction with hydrogels under small normal pressure in water. The friction test was performed between bulk polyacrylamide hydrogels of varied surface roughness and a smooth glass substrate by using a strain-controlled rheometer with parallel-plates geometry. At small pressure (normal strain 1.4-3.6%), the flat surface gel showed a poor reproducibility in friction. In contrast, the gels with a surface roughness of 1-10 µm order showed well reproducible friction behaviors and their frictional stress was larger than that of the flat surface hydrogel. Furthermore, the flat gel showed an elasto-hydrodynamic transition while the rough gels showed a monotonous decrease of friction with velocity. The difference between the flat surface and the rough surface diminished with the increase of the normal pressure. These phenomena are associated with the different contact behaviors of these soft hydrogels in liquid, as revealed by the observation of the interface using a confocal laser microscope.

4.
Biofouling ; 30(3): 271-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24447274

RESUMO

A long-term investigation of the shell shape and the basal morphology of barnacles grown on tough, double-network (DN) hydrogels and polydimethylsiloxane (PDMS) elastomer was conducted in a laboratory environment. The elastic modulus of these soft substrata varied between 0.01 and 0.47 MPa. Polystyrene (PS) (elastic modulus, 3 GPa) was used as a hard substratum control. It was found that the shell shape and the basal plate morphology of barnacles were different on the rigid PS substratum compared to the soft substrata of PDMS and DN hydrogels. Barnacles on the PS substratum had a truncated cone shape with a flat basal plate while on soft PDMS and DN gels, barnacles had a pseudo-cylindrical shape and their basal plates showed curvature. In addition, a large adhesive layer was observed under barnacles on PDMS, but not on DN gels. The effect of substratum stiffness is discussed in terms of barnacle muscle contraction, whereby the relative stiffness of the substratum compared to that of the muscle is considered as the key parameter.


Assuntos
Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos , Elastômeros , Hidrogéis , Thoracica/anatomia & histologia , Animais , Dureza , Propriedades de Superfície , Thoracica/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...