Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
RSC Adv ; 14(42): 31021-31035, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39351406

RESUMO

Nonlinear optical (NLO) materials play a vital role in various technological domains, including optoelectronics and photonic devices. Designing NLO materials, particularly inorganic ones, that strike a compromise between nonlinear optical sensitivity and stability has always been a difficult task. In order to improve the stability and NLO responsiveness, we propose and examine alkali metal-doped boron carbide nanosheets (M@BCNs) in this study. Calculated interaction energies (E int), which span from -65.5 to -94.9 kcal mol-1, show the stability of the M@BCN complexes. The first hyperpolarizability value has also increased, to a maximum of 3.11 × 105 au, indicating improved nonlinear optical characteristics. QTAIM (quantum theory of atoms in molecules) and NCI (non-covalent interactions) analyses demonstrate the validity of the interactions. According to NBO (natural bond orbital) analysis, the alkali metals gain almost +1 charge. Due to the low transition energies and considerable charge transfer between the alkali metals and nanosheet, the nonlinear optical response is significantly improved. The M@BCN complexes also show transparency in the ultraviolet region, with absorption maxima ranging from 917 to 2788 nm. This study proposes a viable approach for developing alkali metal-doped boron carbide nanosheets with improved NLO response and stability.

2.
Environ Res ; 262(Pt 2): 119902, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222730

RESUMO

Microalgae is considered as sustainable and viable feedstock for biofuel production due to its significant advantages over terrestrial plants. Algal biofuels have received significant attention among researchers and energy experts owing to an upsurge in global energy issues emanating from depletion in fossil fuel reserves increasing greenhouse gases emission conflict among agricultural crops, traditional biomass feedstock, and potential futuristic energy security. Further, the exploration of value-added microalgae as sustainable and viable feedstock for the production of variety of biofuels such as biogas, bio-hydrogen, bioethanol, and biodiesel are addressed. Moreover, the assessment of life-cycle, energy balance, and environmental impacts of biofuel production from microalgae are briefly discussed. The present study focused on recent advancements in synthetic biology, metabolic engineering tools, algal bio refinery, and the optimization of algae growth conditions. This paper also elucidates the function of microalgae as bio refineries, the conditions of algae-based cultures, and other operational factors that must be adjusted to produce biofuels that are price-competitive with fossil fuels.

3.
Insects ; 15(9)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39336672

RESUMO

Pollution coming from plastic polymers, particularly polyethylene (PE), poses a serious threat to both humans and animals. The biodegradation of plastics facilitated by insects is a crucial and eco-friendly approach that can be employed to combat this global concern. Recently, the larvae of the greater wax moth Galleria mellonella (L.) have been recognized as avid 'plastivores'. The current study was aimed at evaluating the feeding efficiency of G. mellonella larvae on PEs of various densities with a co-diet supplementation of wheat germ + honey and beeswax. The results reveal that maximum PE consumption (9.98 ± 1.25 mg) was recorded in the case of 1.0 mm thick PE after a 24 h interval; however, the same scenario also achieved the greatest reduction in larval weight (27.79 ± 2.02 mg). A significant reduction in PE mass (5.87 ± 1.44 mg) was also observed in 1.0 mm PE when fed beeswax; however, the larvae experienced minimal weight loss (9.59 ± 3.81 mg). The larvae exhibited a higher PE consumption in 1.0 mm PE, indicating that the lower the density of PE, the greater the consumed area. Moreover, the biodegradation levels were notably higher within the 24 h interval. In conclusion, these findings suggest that the density of PEs and the supplementation of the co-diet have an impact on PE biodegradation. Additionally, the utilization of G. mellonella for the biodegradation of PE proves effective when combined with beeswax, resulting in minimal weight loss of the larvae. Our findings offer initial insights into how Galleria mellonella larvae biodegrade polyethylene (PE) of four different densities, along with co-diet supplementation. This approach helps us evaluate how varying densities affect degradation rates and provides a better understanding of the larvae's capabilities. Additionally, our observations at three specific time intervals (24, 48, and 72 h) allow us to identify the time required for achieving degradation rates. Through examining these time points, our method offers valuable insights into the initial phases of plastic consumption and biodegradation.

4.
BMC Neurol ; 24(1): 354, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304850

RESUMO

BACKGROUND: Hereditary Spastic Paraplegias (HSPs) and Hereditary Cerebellar Ataxias (HCAs) are progressive neurodegenerative disorders encompassing a spectrum of neurogenetic conditions with significant overlaps of clinical features. Spastic ataxias are a group of conditions that have features of both cerebellar ataxia and spasticity, and these conditions are frequently clinically challenging to distinguish. Accurate genetic diagnosis is crucial but challenging, particularly in resource-limited settings. This study aims to investigate the genetic basis of HSPs and HCAs in Pakistani families. METHODS: Families from Khyber Pakhtunkhwa with at least two members showing HSP or HCA phenotypes, and who had not previously been analyzed genetically, were included. Families were referred for genetic analysis by local neurologists based on the proband's clinical features and signs of a potential genetic neurodegenerative disorder. Whole Exome Sequencing (WES) and Sanger sequencing were then used to identify and validate genetic variants, and to analyze variant segregation within families to determine inheritance patterns. The mean age of onset and standard deviation were calculated to assess variability among affected individuals, and the success rate was compared with literature reports using differences in proportions and Cohen's h. RESULTS: Pathogenic variants associated with these conditions were identified in five of eight families, segregating according to autosomal recessive inheritance. These variants included previously reported SACS c.2182 C > T, p.(Arg728*), FA2H c.159_176del, p.(Arg53_Ile58del) and SPG11 c.2146 C > T, p.(Gln716*) variants, and two previously unreported variants in SACS c.2229del, p.(Phe743Leufs*8) and ZFYVE26 c.1926_1941del, p.(Tyr643Metfs*2). Additionally, FA2H and SPG11 variants were found to have recurrent occurrences, suggesting a potential founder effect within the Pakistani population. Onset age among affected individuals ranged from 1 to 14 years (M = 6.23, SD = 3.96). The diagnostic success rate was 62.5%, with moderate effect sizes compared to previous studies. CONCLUSIONS: The findings of this study expand the genotypic and phenotypic spectrum of HSPs and HCAs in Pakistan and emphasize the importance of utilizing exome/genome sequencing for accurate diagnosis or support accurate differential diagnosis. This approach can improve genetic counseling and clinical management, addressing the challenges of diagnosing neurodegenerative disorders in resource-limited settings.


Assuntos
Ataxia Cerebelar , Linhagem , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico , Paquistão , Masculino , Feminino , Adulto , Criança , Adolescente , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Sequenciamento do Exoma/métodos , Mutação , Fenótipo
5.
Sci Rep ; 14(1): 14711, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926460

RESUMO

In the current study, the fish farm model perturbed with time white noise is numerically examined. This model contains fish and mussel populations with external food supplied. The main aim of this work is to develop time-efficient numerical schemes for such models that preserve the dynamical properties. The stochastic backward Euler (SBE) and stochastic Implicit finite difference (SIFD) schemes are designed for the computational results. In the mean square sense, both schemes are consistent with the underlying model and schemes are von Neumann stable. The underlying model has various equilibria points and all these points are successfully gained by the SIFD scheme. The SIFD scheme showed positive and convergent behavior for the given values of the parameter. As the underlying model is a population model and its solution can attain minimum value zero, so a solution that can attain value less than zero is not biologically possible. So, the numerical solution obtained by the stochastic backward Euler is negative and divergent solution and it is not a biological phenomenon that is useless in such dynamical systems. The graphical behaviors of the system show that external nutrient supply is the important factor that controls the dynamics of the given model. The three-dimensional results are drawn for the various choices of the parameters.


Assuntos
Peixes , Animais , Peixes/fisiologia , Pesqueiros , Modelos Teóricos , Processos Estocásticos , Aquicultura/métodos , Simulação por Computador
6.
BMC Health Serv Res ; 24(1): 588, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711060

RESUMO

BACKGROUND: Effective skills and training for physicians are essential for communicating difficult or distressing information, also known as breaking bad news (BBN). This study aimed to assess both the capacity and the practices of clinicians in Pakistan regarding BBN. METHODS: A cross-sectional study was conducted involving 151 clinicians. Quantitative component used a structured questionnaire, while qualitative data were obtained through in-depth interviews with 13 medical educationists. The responses were analyzed using descriptive statistics and thematic analysis. RESULTS: While most clinicians acknowledged their responsibility of delivering difficult news, only a small percentage had received formal training in BBN. Areas for improvement include time and interruption management, rapport building, and understanding the patients' point of view. Prognosis and treatment options were not consistently discussed. Limited importance is given to BBN in medical education. DISCUSSION: Training in BBN will lead to improved patient and attendants' satisfaction, and empathetic support during difficult times.


Assuntos
Comunicação , Relações Médico-Paciente , Revelação da Verdade , Humanos , Paquistão , Estudos Transversais , Masculino , Feminino , Inquéritos e Questionários , Adulto , Médicos/psicologia , Pesquisa Qualitativa , Competência Clínica , Entrevistas como Assunto , Pessoa de Meia-Idade , Atitude do Pessoal de Saúde
7.
BMC Neurol ; 24(1): 172, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783254

RESUMO

BACKGROUND: Epilepsy, a challenging neurological condition, is often present with comorbidities that significantly impact diagnosis and management. In the Pakistani population, where financial limitations and geographical challenges hinder access to advanced diagnostic methods, understanding the genetic underpinnings of epilepsy and its associated conditions becomes crucial. METHODS: This study investigated four distinct Pakistani families, each presenting with epilepsy and a spectrum of comorbidities, using a combination of whole exome sequencing (WES) and Sanger sequencing. The epileptic patients were prescribed multiple antiseizure medications (ASMs), yet their seizures persist, indicating the challenging nature of ASM-resistant epilepsy. RESULTS: Identified genetic variants contributed to a diverse range of clinical phenotypes. In the family 1, which presented with epilepsy, developmental delay (DD), sleep disturbance, and aggressive behavior, a homozygous splice site variant, c.1339-6 C > T, in the COL18A1 gene was detected. The family 2 exhibited epilepsy, intellectual disability (ID), DD, and anxiety phenotypes, a homozygous missense variant, c.344T > A (p. Val115Glu), in the UFSP2 gene was identified. In family 3, which displayed epilepsy, ataxia, ID, DD, and speech impediment, a novel homozygous frameshift variant, c.1926_1941del (p. Tyr643MetfsX2), in the ZFYVE26 gene was found. Lastly, family 4 was presented with epilepsy, ID, DD, deafness, drooling, speech impediment, hypotonia, and a weak cry. A homozygous missense variant, c.1208 C > A (p. Ala403Glu), in the ATP13A2 gene was identified. CONCLUSION: This study highlights the genetic heterogeneity in ASM-resistant epilepsy and comorbidities among Pakistani families, emphasizing the importance of genotype-phenotype correlation and the necessity for expanded genetic testing in complex clinical cases.


Assuntos
Comorbidade , Epilepsia , Heterogeneidade Genética , Linhagem , Humanos , Paquistão/epidemiologia , Epilepsia/genética , Epilepsia/epidemiologia , Epilepsia/diagnóstico , Masculino , Feminino , Criança , Pré-Escolar , Adolescente , Sequenciamento do Exoma , Adulto , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/epidemiologia , Adulto Jovem , Deficiência Intelectual/genética , Deficiência Intelectual/epidemiologia , Fenótipo
8.
Chemosphere ; 359: 142337, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754490

RESUMO

Soil salinity poses a substantial threat to agricultural productivity, resulting in far-reaching consequences. Green-synthesized lignin nanoparticles (LNPs) have emerged as significant biopolymers which effectively promote sustainable crop production and enhance abiotic stress tolerance. However, the defensive role and underlying mechanisms of LNPs against salt stress in Zea mays remain unexplored. The present study aims to elucidate two aspects: firstly, the synthesis of lignin nanoparticles from alkali lignin, which were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Fourier Infrared Spectroscopy (FT-IR) and Energy Dispersive X-Ray Spectroscopy (EDX). The results confirmed the purity and morphology of LNPs. Secondly, the utilization of LNPs (200 mg/L) in nano priming to alleviate the adverse effects of NaCl (150 mM) on Zea mays seedlings. LNPs significantly reduced the accumulation of Na+ (17/21%) and MDA levels (21/28%) in shoots/roots while increased lignin absorption (30/31%), resulting in improved photosynthetic performance and plant growth. Moreover, LNPs substantially improved plant biomass, antioxidant enzymatic activities and upregulated the expression of salt-tolerant genes (ZmNHX3 (1.52 & 2.81 FC), CBL (2.83 & 3.28 FC), ZmHKT1 (2.09 & 4.87 FC) and MAPK1 (3.50 & 2.39 FC) in both shoot and root tissues. Additionally, SEM and TEM observations of plant tissues confirmed the pivotal role of LNPs in mitigating NaCl-induced stress by reducing damages to guard cells, stomata and ultra-cellular structures. Overall, our findings highlight the efficacy of LNPs as a practical and cost-effective approach to alleviate NaCl-induced stress in Zea mays plants. These results offer a sustainable agri-environmental strategy for mitigating salt toxicity and enhancing crop production in saline environments.


Assuntos
Antioxidantes , Lignina , Nanopartículas , Estresse Salino , Zea mays , Zea mays/efeitos dos fármacos , Lignina/química , Estresse Salino/efeitos dos fármacos , Antioxidantes/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Química Verde , Tolerância ao Sal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Salinidade
9.
Acta Trop ; 256: 107269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821147

RESUMO

Mosquitoes serve as vectors for various diseases like malaria, dengue fever, yellow fever, and lymphatic filarial diseases causing significant global health problems, highlighting the importance of vector control. The study was conducted to assess the effectiveness of nanoformulated clothianidin and chlorfenapyr insecticides treated with ATSB in controlling three mosquito strains. The development of a natural thiolated polymer-coated ATSB nano formulation involved incorporating nano-carriers to deliver insecticides. Field- collected mosquito strains were subjected to laboratory-based bioassays using 1 % and 1.5 % concentrations of each conventionally used and nanoformulated insecticide with ATSB solution. Adult mosquitoes were left overnight to contact with N-ATSB and efficacy was recorded after 36 and 72 h. The results showed that nanoformulated chlorfenapyr was significantly more effective as compared to clothianidin against An. funestus and Cx. quinquefasciatus but the results were not significantly different against An. coluzzii (100 %). An. coluzzii was found to be the most susceptible strain followed by An. funestus and showed 100 % and ∼ 98 % mortality against nanoformulated chlorfenapyr (1.5 %). Nanoformulated clothianidin induced more than 92 % and ∼ 100 % mortality against An. funestus and An. coluzzii respectively. However, Cx. quinquefasciatus significantly showed less mortality against nanoformulated clothianidin (88 %) and chlorfenapyr (>95 %) as compared to Anopheline strains. Furthermore, results indicate that nanoformulated insecticides significantly caused greater and prolonged fatality as compared to conventional form, suggesting effective and suitable strategies for vector management.


Assuntos
Anopheles , Culex , Guanidinas , Inseticidas , Controle de Mosquitos , Neonicotinoides , Piretrinas , Tiazóis , Animais , Guanidinas/química , Guanidinas/farmacologia , Inseticidas/farmacologia , Culex/efeitos dos fármacos , Neonicotinoides/farmacologia , Anopheles/efeitos dos fármacos , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Feminino , Análise de Sobrevida , Bioensaio
10.
Membranes (Basel) ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786950

RESUMO

Water pollution remains a critical concern, one necessitated by rapidly increasing industrialization and urbanization. Among the various strategies for water purification, membrane technology stands out, with polyethersulfone (PES) often being the material of choice due to its robust mechanical properties, thermal stability, and chemical resistance. However, PES-based membranes tend to exhibit low hydrophilicity, leading to reduced flux and poor anti-fouling performance. This study addresses these limitations by incorporating titanium dioxide nanotubes (TiO2NTs) into PES nanofiltration membranes to enhance their hydrophilic properties. The TiO2NTs, characterized through FTIR, XRD, BET, and SEM, were embedded in PES at varying concentrations using a non-solvent induced phase inversion (NIPS) method. The fabricated mixed matrix membranes (MMMs) were subjected to testing for water permeability and solute rejection capabilities. Remarkably, membranes with a 1 wt% TiO2NT loading displayed a significant increase in pure water flux, from 36 to 72 L m2 h-1 bar-1, a 300-fold increase in selectivity compared to the pristine sample, and a dye rejection of 99%. Furthermore, long-term stability tests showed only a slight reduction in permeate flux over a time of 36 h, while dye removal efficiency was maintained, thus confirming the membrane's stability. Anti-fouling tests revealed a 93% flux recovery ratio, indicating excellent resistance to fouling. These results suggest that the inclusion of TiO2 NTs offers a promising avenue for the development of efficient and stable anti-fouling PES-based membranes for water purification.

11.
Mol Biol Rep ; 51(1): 490, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578476

RESUMO

BACKGROUND: One of the most challenging aspects of nucleic acid amplification tests is the extraction of genomic DNA. However, achieving satisfactory quality and quantity of genomic DNA is not always easy, while the demand for rapid, low-cost and less laborious DNA isolation methods is ever-increasing. METHODS AND RESULTS: We have developed a rapid (⁓2 min) crude DNA extraction method leading to direct-PCR that requires minimum reagents and laboratory equipment. It was developed by eliminating the time-consuming purification steps of DNA extraction, by processing the sample in optimized amounts of Taq KCl PCR buffer and DNARelease Additive/Proteinase K in only two minutes and carrying out amplification using conventional Taq DNA polymerase. The DNA preparation method was validated on muscle tissue samples from 12 different species as well as 48 cooked meat samples. Its compatibility was also successfully tested with different types of PCR amplification platforms extensively used for genetic analysis, such as simplex PCR, PCR-RFLP (Restriction Fragment Length Polymorphism), multiplex PCR, isothermal amplification, real-time PCR and DNA sequencing. CONCLUSIONS: The developed protocol provides sufficient amount of crude DNA from muscle tissues of different species for PCR amplifications to identify species-of-origin via different techniques coupled with PCR. The simplicity and robustness of this protocol make nucleic acid amplification assays more accessible and affordable to researchers and authorities for both laboratory and point-of-care tests.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , Sequência de Bases , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real , Músculos
12.
PeerJ ; 12: e16944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495762

RESUMO

Background: The chickpea pod borer Helicoverpa armigera (Hübner) is a significant insect pest of chickpea crops, causing substantial global losses. Methods: Field experiments were conducted in Central Punjab, Pakistan, to investigate the impact of biotic and abiotic factors on pod borer population dynamics and infestation in nine kabuli chickpea genotypes during two cropping seasons (2020-2021 and 2021-2022). The crops were sown in November in both years, with row-to-row and plant-to-plant distances of 30 and 15 cm, respectively, following a randomized complete block design (RCBD). Results: Results showed a significant difference among the tested genotypes in trichome density, pod wall thickness, and leaf chlorophyll contents. Significantly lower larval population (0.85 and 1.10 larvae per plant) and percent damage (10.65% and 14.25%) were observed in genotype Noor-2019 during 2020-2021 and 2021-2022, respectively. Pod trichome density, pod wall thickness, and chlorophyll content of leaves also showed significant variation among the tested genotypes. Pod trichome density and pod wall thickness correlated negatively with larval infestation, while chlorophyll content in leaves showed a positive correlation. Additionally, the larval population positively correlated with minimum and maximum temperatures, while relative humidity negatively correlated with the larval population. Study results explore natural enemies as potential biological control agents and reduce reliance on chemical pesticides.


Assuntos
Cicer , Mariposas , Animais , Clorofila , Cicer/genética , Produtos Agrícolas/genética , Genótipo , Helicoverpa armigera , Larva/genética , Mariposas/genética
13.
Chemosphere ; 354: 141672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479680

RESUMO

Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.


Assuntos
Carvão Vegetal , Metais Pesados , Nanopartículas , Poluentes do Solo , Humanos , Cádmio/análise , Biodegradação Ambiental , Metais Pesados/análise , Plantas , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
14.
Funct Plant Biol ; 512024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38310885

RESUMO

Melatonin is a naturally occurring biologically active amine produced by plants, animals and microbes. This review explores the biosynthesis of melatonin in plants, with a particular focus on its diverse roles in Arabidopsis thaliana , a model species. Melatonin affects abiotic and biotic stress resistance in A. thaliana . Exogenous and endogenous melatonin is addressed in association with various conditions, including cold stress, high light stress, intense heat and infection with Botrytis cinerea or Pseudomonas , as well as in seed germination and lateral root formation. Furthermore, melatonin confers stress resistance in Arabidopsis by initiating the antioxidant system, remedying photosynthesis suppression, regulating transcription factors involved with stress resistance (CBF, DREB, ZAT, CAMTA, WRKY33, MYC2, TGA) and other stress-related hormones (abscisic acid, auxin, ethylene, jasmonic acid and salicylic acid). This article additionally addresses other precursors, metabolic components, expression of genes (COR , CBF , SNAT , ASMT , PIN , PR1 , PDF1.2 and HSFA ) and proteins (JAZ, NPR1) associated with melatonin and reducing both biological and environmental stressors. Furthermore, the future perspective of melatonin rich agri-crops is explored to enhance plant tolerance to abiotic and biotic stresses, maximise crop productivity and enhance nutritional worth, which may help improve food security.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Melatonina , Arabidopsis/genética , Melatonina/metabolismo , Plantas/genética , Proteínas de Arabidopsis/genética , Resposta ao Choque Frio
15.
BMC Plant Biol ; 24(1): 138, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408911

RESUMO

Micronutrient application has a crucial role in mitigating salinity stress in crop plants. This study was carried out to investigate the effect of zinc (Zn) and boron (B) as foliar applications on fenugreek growth and physiology under salt stress (0 and 120 mM). After 35 days of salt treatments, three levels of zinc (0, 50, and 100 ppm) and two levels of boron (0 and 2 ppm) were applied as a foliar application. Salinity significantly reduced root length (72.7%) and shoot length (33.9%), plant height (36%), leaf area (37%), root fresh weight (48%) and shoot fresh weight (75%), root dry weight (80%) and shoot dry weight (67%), photosynthetic pigments (78%), number of branches (50%), and seeds per pod (56%). Fenugreek's growth and physiology were improved by foliar spray of zinc and boron, which increased the length of the shoot (6%) and root length (2%), fresh root weight (18%), and dry root weight (8%), and chlorophyll a (1%), chlorophyll b (25%), total soluble protein content (3%), shoot calcium (9%) and potassium (5%) contents by significantly decreasing sodium ion (11%) content. Moreover, 100 ppm of Zn and 2 ppm of B enhanced the growth and physiology of fenugreek by reducing the effect of salt stress. Overall, boron and zinc foliar spray is suggested for improvement in fenugreek growth under salinity stress.


Assuntos
Trigonella , Zinco , Boro/metabolismo , Boro/farmacologia , Clorofila A/metabolismo , Estresse Salino , Tensoativos/metabolismo , Tensoativos/farmacologia , Trigonella/metabolismo , Zinco/metabolismo , Zinco/farmacologia
16.
J Gene Med ; 26(1): e3591, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721116

RESUMO

BACKGROUND: Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS: Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS: In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS: RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.


Assuntos
Deficiência Intelectual , Rabdomiólise , Síndrome de Rubinstein-Taybi , Humanos , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/química , Deficiência Intelectual/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , Rabdomiólise/genética , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/patologia
17.
Sci Total Environ ; 912: 169288, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38110103

RESUMO

Cadmium contamination poses severe environmental and health threats, necessitating effective mitigation strategies. Rice husk biochar (BC) and nanoparticle (NP) treatments are emerging strategies with limited research on their synergistic benefits. This study assesses BC, silicon NPs (nSi), and iron NPs (nFe) modifications (B-nSi, B-nFe, and B-nSi-nFe) to reduce Cd-bioavailability in soil and its toxicity in maize, not reported before. Characterization of amendments validated, nSi and nFe attachment to BC, forming new mineral crystals to adsorb Cd. We found that B-nSi-nFe induced Cd-immobilization in soil by the formation of Cd-ligand complexes with the effective retention of NPs within microporous structure of BC. B-nSi-nFe increased soil pH by 0.76 units while reducing bioavailable Cd by 49 %, than Ck-Cd. Resultantly, B-nSi-nFe reduced Cd concentrations in roots and shoots by 51 % and 75 %, respectively. Moreover, the application of B-nSi-nFe significantly enhanced plant biomass, antioxidant activities, and upregulated the expression of antioxidant genes [ZmAPX (3.28 FC), ZmCAT (3.20 FC), ZmPOD (2.58 FC), ZmSOD (3.08 FC), ZmGSH (3.17 FC), and ZmMDHAR (3.80 FC)] while downregulating Cd transporter genes [ZmNramp5 (3.65 FC), ZmHMA2 (2.92 FC), and ZmHMA3 (3.40 FC)] compared to Ck-Cd. Additionally, confocal microscopy confirmed the efficacy of B-nSi-nFe in maintaining cell integrity due to reduced oxidative stress. SEM and TEM observations revealed alleviation of Cd toxicity to stomata, guard cells, and ultracellular structures with B-nSi-nFe treatment. Overall, this study demonstrated the potential of B-nSi-nFe for reducing Cd mobility in soil-plant system, mitigating Cd-toxicity in plants and improving enzymatic activities in soil.


Assuntos
Nanopartículas , Oryza , Poluentes do Solo , Ferro/metabolismo , Cádmio/análise , Zea mays/metabolismo , Silício , Antioxidantes/metabolismo , Carvão Vegetal/química , Solo/química , Nanopartículas/toxicidade , Nanopartículas/química , Oryza/química , Poluentes do Solo/análise
18.
Environ Res ; 244: 117949, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109961

RESUMO

Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.


Assuntos
Compostagem , Plásticos , Humanos , Biopolímeros/química , Tecnologia , Resíduos Industriais
19.
Chemosphere ; 346: 140590, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914045

RESUMO

Cadmium (Cd) contamination is an eminent dilemma that jeopardizes global food safety and security, especially through its phytotoxicity in rice; one of the most edible crops. Melatonin (MET) has emerged as a protective phytohormone in stress conditions, but the defensive role and underlying mechanisms of MET against Cd toxicity in rice still remain unclear. To fulfill this knowledge gap, the present study is to uncover the key mechanisms for MET-mediated Cd-stress tolerance in rice. Cd toxicity significantly reduced growth by hindering the process of photosynthesis, cellular redox homeostasis, phytohormonal imbalance, and ultrastructural damages. Contrarily, MET supplementation considerably improved growth attributes, photosynthetic efficiency, and cellular ultrastructure as measured by gas exchange elements, chlorophyll content, reduced Cd accumulation, and ultrastructural analysis via transmission electron microscopy (TEM). MET treatment significantly reduced Cd accumulation (39.25%/31.58%), MDA (25.87%/19.45%), H2O2 (17.93%/9.56%), and O2 (29.11%/27.14%) levels in shoot/root tissues, respectively, when compared with Cd treatment. More importantly, MET manifested association with stress responsive phytohormones (ABA and IAA) and boosted the defense mechanisms of plant by enhancing the activities of ROS-scavenging antioxidant enzymes (SOD; superoxide dismutase, POD; peroxidase, CAT; catalase, APX; ascorbate peroxidase) and as well as regulating the key stress-responsive genes (OsSOD1, OsPOD1, OsCAT2, OsAPX1), thereby reinstate cellular membrane integrity and confer tolerance to ultrastructural damages under Cd-induced phytotoxicity. Overall, our findings emphasized the potential of MET as a long-term and cost-effective approach to Cd remediation in paddy soils, which can pave the way for a healthier and more environmentally conscious agricultural sector.


Assuntos
Melatonina , Oryza , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cádmio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Melatonina/metabolismo , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo
20.
BMC Public Health ; 23(1): 2480, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082395

RESUMO

BACKGROUND: Ongoing high neonatal mortality rates (NMRs) represent a global challenge. In 2021, of the 5 million deaths reported worldwide for children under five years of age, 47% were newborns. Pakistan has one of the five highest national NMRs in the world, with an estimated 39 neonatal deaths per 1,000 live births. Reducing newborn deaths requires sustainable, evidence-based, and cost-effective interventions that can be integrated within existing community healthcare infrastructure across regions with high NMR. METHODS: This pragmatic, community-based, parallel-arm, open-label, cluster randomized controlled trial aims to estimate the effect of Lady Health Workers (LHWs) providing an integrated newborn care kit (iNCK) with educational instructions to pregnant women in their third trimester, compared to the local standard of care in Gilgit-Baltistan, Pakistan, on neonatal mortality and other newborn and maternal health outcomes. The iNCK contains a clean birth kit, 4% chlorhexidine topical gel, sunflower oil emollient, a ThermoSpot™ temperature monitoring sticker, a fleece blanket, a click-to-heat reusable warmer, three 200 µg misoprostol tablets, and a pictorial instruction guide and diary. LHWs are also provided with a handheld scale to weigh the newborn. The primary study outcome is neonatal mortality, defined as a newborn death in the first 28 days of life. DISCUSSION: This study will generate policy-relevant knowledge on the effectiveness of integrating evidence-based maternal and newborn interventions and delivering them directly to pregnant women via existing community health infrastructure, for reducing neonatal mortality and morbidity, in a remote, mountainous area with a high NMR. TRIAL REGISTRATION: NCT04798833, March 15, 2021.


Assuntos
Mortalidade Infantil , Morte Perinatal , Criança , Recém-Nascido , Gravidez , Humanos , Feminino , Pré-Escolar , Paquistão , Serviços de Saúde Comunitária , Terceiro Trimestre da Gravidez , Avaliação de Resultados em Cuidados de Saúde , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA