Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394259

RESUMO

Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity, and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However, while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycaemic/hyperinsulinaemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlates with these differences.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Camundongos , Animais , Amido , Obesidade , Dieta Hiperlipídica/efeitos adversos , Insulina , Camundongos Obesos , Ceramidas , Glucose
2.
J Endocrinol ; 239(3): 313-324, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400016

RESUMO

One major factor affecting physiology often overlooked when comparing data from animal models and humans is the effect of ambient temperature. The majority of rodent housing is maintained at ~22°C, the thermoneutral temperature for lightly clothed humans. However, mice have a much higher thermoneutral temperature of ~30°C, consequently data collected at 22°C in mice could be influenced by animals being exposed to a chronic cold stress. The aim of this study was to investigate the effect of housing temperature on glucose homeostasis and energy metabolism of mice fed normal chow or a high-fat, obesogenic diet (HFD). Male C57BL/6J(Arc) mice were housed at standard temperature (22°C) or at thermoneutrality (29°C) and fed either chow or a 60% HFD for 13 weeks. The HFD increased fat mass and produced glucose intolerance as expected but this was not exacerbated in mice housed at thermoneutrality. Changing the ambient temperature, however, did alter energy expenditure, food intake, lipid content and glucose metabolism in skeletal muscle, liver and brown adipose tissue. Collectively, these findings demonstrate that mice regulate energy balance at different housing temperatures to maintain whole-body glucose tolerance and adiposity irrespective of the diet. Despite this, metabolic differences in individual tissues were apparent. In conclusion, dietary intervention in mice has a greater impact on adiposity and glucose metabolism than housing temperature although temperature is still a significant factor in regulating metabolic parameters in individual tissues.


Assuntos
Metabolismo dos Carboidratos , Ingestão de Energia , Metabolismo Energético , Abrigo para Animais/normas , Temperatura , Tecido Adiposo Marrom/metabolismo , Animais , Composição Corporal , Peso Corporal , Dieta Hiperlipídica , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Triglicerídeos/metabolismo , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA