Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37743524

RESUMO

BACKGROUND: Recent advances have been achieved in the genetic diagnosis and therapies against malignancies due to a better understanding of the molecular mechanisms underlying carcinogenesis. Since active preventive methods are currently insufficient, the further development of appropriate preventive strategies is desired. METHODS: We searched for drinks that reactivate the functions of tumor-suppressor retinoblastoma gene (RB) products and exert anti-inflammatory and antioxidant effects. We also examined whether lactic acid bacteria increased the production of the cancer-specific anti-tumor cytokine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in human, and examined whether the RB-reactivating drinks with lactic acid bacteria decreased azoxymethane-induced rat colon aberrant crypt foci (ACF) and aberrant crypts (ACs) in vivo. RESULTS: Kakadu plum juice and pomegranate juice reactivated RB functions, which inhibited the growth of human colon cancer LIM1215 cells by G1 phase arrest. These juices also exerted anti-inflammatory and antioxidant effects. Lactiplantibacillus (L.) pentosus S-PT84 was administered to human volunteers and increased the production of TRAIL. In an in vivo study, Kakadu plum juice with or without pomegranate juice and S-PT84 significantly decreased azoxymethane-induced rat colon ACF and ACs. CONCLUSIONS: RB is one of the most important molecules suppressing carcinogenesis, and to the best of our knowledge, this is the first study to demonstrate that natural drinks reactivated the functions of RB. As expected, Kakadu plum juice and pomegranate juice suppressed the growth of LIM1215 cells by reactivating the functions of RB, and Kakadu plum juice with or without pomegranate juice and S-PT84 inhibited rat colon ACF and ACs. Therefore, this mixed juice has potential as a novel candidate for cancer prevention.


Assuntos
Antioxidantes , Neoplasias , Animais , Ratos , Humanos , Carcinogênese , Apoptose , Azoximetano/toxicidade
2.
Biochem Biophys Res Commun ; 628: 110-115, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36084548

RESUMO

Colorectal cancer is a significant cause of morbidity and represents a serious public health issue in many countries. The development of a breakthrough preventive method for colorectal cancer is urgently needed. Aspirin has recently been attracting attention as a cancer preventive drug, and its inhibitory effects on the development of various cancers have been reported in several large prospective studies. However, the underlying molecular mechanisms have not yet been elucidated in detail. In the present study, we attempted to identify the target proteins of aspirin using a chemical biology technique with salicylic acid, the main metabolite of aspirin. We generated salicylic acid-presenting FG beads and purified salicylic acid-binding proteins from human colorectal cancer HT-29 cells. The results obtained showed the potential of ribosomal protein S3 (RPS3) as one of the target proteins of salicylic acid. The depletion of RPS3 by siRNA reduced CDK4 expression and induced G1 phase arrest in human colorectal cancer cells. These results were consistent with the effects induced by the treatment with sodium salicylate, suggesting that salicylic acid negatively regulates the function of RPS3. Collectively, the present results show the potential of RPS3 as a novel target for salicylic acid in the protective effects of aspirin against colorectal cancer, thereby supporting RPS3 as a target molecule for cancer prevention.


Assuntos
Neoplasias Colorretais , Proteínas Ribossômicas , Ácido Salicílico , Aspirina/farmacologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Quinase 4 Dependente de Ciclina/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Humanos , Estudos Prospectivos , RNA Interferente Pequeno , Proteínas Ribossômicas/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Ácido Salicílico/farmacologia , Salicilato de Sódio
3.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328342

RESUMO

Multiple myeloma (MM) is characterized by remarkable cytogenetic/molecular heterogeneity among patients and intraclonal diversity even in a single patient. We previously demonstrated that PDPK1, the master kinase of series of AGC kinases, is universally active in MM, and plays pivotal roles in cell proliferation and cell survival of myeloma cells regardless of the profiles of cytogenetic and genetic abnormalities. This study investigated the therapeutic efficacy and mechanism of action of dual blockade of two major PDPK1 substrates, RSK2 and AKT, in MM. The combinatory treatment of BI-D1870, an inhibitor for N-terminal kinase domain (NTKD) of RSK2, and ipatasertib, an inhibitor for AKT, showed the additive to synergistic anti-tumor effect on human MM-derived cell lines (HMCLs) with active RSK2-NTKD and AKT, by enhancing apoptotic induction with BIM and BID activation. Moreover, the dual blockade of RSK2 and AKT exerted robust molecular effects on critical gene sets associated with myeloma pathophysiologies, such as those with MYC, mTOR, STK33, ribosomal biogenesis, or cell-extrinsic stimuli of soluble factors, in HMCLs. These results provide the biological and molecular rationales for the dual-targeting strategy for RSK2 and AKT, which may overcome the therapeutic difficulty due to cytogenetic/molecular heterogeneity in MM.


Assuntos
Mieloma Múltiplo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
4.
Biochem Biophys Res Commun ; 590: 55-62, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34971958

RESUMO

Cellular senescence is a state of irreversible cell growth arrest that functions as a biological defense mechanism against severe DNA damage. Senescent cells with DNA damage produce pro-inflammatory cytokines, such as IL-6 and IL-8, and this phenomenon is called the senescence-associated secretory phenotype (SASP). SASP factors have been implicated in various disorders, including cancer. We performed a screening assay and identified oridonin as a candidate SASP inhibitor. Oridonin is an active diterpenoid that is isolated from Isodon plants and has been reported to exhibit anti-inflammatory, antibacterial, antioxidant, and antitumor activities. It reduced the secretion of IL-6 and IL-8 in senescent cells at the protein and mRNA levels. Oridonin also inhibited p65 subunit of NF-κB activity. However, oridonin did not affect SA ß-gal activity and enhanced the expression of p21. The expression and phosphorylation of p38 were down-regulated by oridonin. The p38 inhibitor SB203580 inhibited the secretion of IL-8, slightly inhibited the secretion of IL-6, and did not affect NF-κB activity. Therefore, the NF-κB and p38 pathways may contribute to the inhibition of SASP by oridonin. Oridonin has potential as a therapeutic agent for SASP-related diseases.


Assuntos
Senescência Celular , Diterpenos do Tipo Caurano/farmacologia , NF-kappa B/metabolismo , Fenótipo Secretor Associado à Senescência , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Bleomicina , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Humanos , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos
5.
Cancer Sci ; 112(10): 4166-4175, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34288272

RESUMO

Various molecular-targeting drugs have markedly improved the treatment of patients with breast cancer. As yet, therapies for triple-negative breast cancer are mainly cytotoxic agents. To investigate the novel therapy for triple-negative breast cancer, we herein examined the effects of a new combination therapy comprising a RAF/MEK inhibitor CH5126766, also known as VS-6766, which we originally discovered, and eribulin. The combination of CH5126766 and eribulin potently inhibited cell growth in the triple-negative breast cancer cell lines tested. The underlying mechanism in the efficacy of this combination treatment in vitro and in vivo was due to enhanced apoptosis through the suppression of survivin and Bcl-2 family proteins. We also showed the suppressed expression of programmed cell death ligand 1 (PD-L1) in combination therapy in vivo. We found that combination therapy with eribulin and CH5126766 for triple-negative breast cancer inhibited cell growth by apoptosis and raised a possibility that immune responses through suppression of PD-L1 might partially contribute to inhibition of tumor growth, indicating the potential of this combination as a novel strategy for triple-negative breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cumarínicos/uso terapêutico , Furanos/uso terapêutico , Cetonas/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Oncogênica v-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Distribuição Aleatória , Survivina/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaio Tumoral de Célula-Tronco
6.
J BUON ; 25(1): 464-471, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32277670

RESUMO

PURPOSE: Myxofibrosarcoma is characterized by a high rate of recurrence after surgery. Since myxofibrosarcoma is refractory to conventional cytotoxic chemotherapy, the established radical treatment is primary wide resection. The effects of histone deacetylase (HDAC) inhibitors on myxofibrosarcoma have not yet been investigated. Therefore, the main purpose of the present study was to examine the effects of a HDAC inhibitor on myxofibrosarcoma. METHODS: The effects of the HDAC inhibitor OBP-801 on human myxofibrosarcoma cells were examined using cell viability assay, flow cytometric analysis of the cell cycle and apoptosis, and Western blotting. The effects of combinations of OBP-801 with pazopanib or Akt-mTOR inhibitors were also investigated using cell viability assay. RESULTS: OBP-801 inhibited the growth of myxofibrosarcoma NMFH-1 and NMFH-2 cells. It also induced cell cycle arrest at the G2 phase and apoptosis in both cell lines. The inhibitory effects of pazopanib and Akt-mTOR inhibitors on the growth of myxofibrosarcoma cells were enhanced by the combination with OBP-801. CONCLUSIONS: The present results demonstrated that OBP-801 exerted therapeutic effects in myxofibrosarcoma in both single and concomitant administrations. Therefore, OBP-801 has potential as a novel treatment for myxofibrosarcoma.


Assuntos
Fibrossarcoma/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Humanos
7.
Oncol Lett ; 18(4): 4253-4261, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31579089

RESUMO

Sulforaphane and Lactobacilli induce apoptosis in several cancer cells. Sulforaphane, a dietary isothiocyanate, is an attractive agent due to its potent anticancer effects. Sulforaphane suppresses the proliferation of various cancer cells in vitro and in vivo. The present study investigated the effect of sulforaphane and a co-culture with Lactobacillus-treated peripheral blood mononuclear cells (PBMCs) in human colon cancer cells. The combination markedly induced apoptosis in human colon cancer HCT116 and SW480 cells. A pan-caspase inhibitor markedly inhibited apoptosis, and a tumor necrosis factor (TNF) receptor/Fc chimera partially inhibited apoptosis in both cells. The amount of TNFα secretion in the culture supernatant was significantly increased by co-culture with Lactobacillus-treated normal human PBMCs. On the other hand, the expression of cellular inhibitor of apoptosis-2 (cIAP-2), an anti-apoptotic protein, was increased by co-culture with Lactobacillus-treated PBMCs in colon cancer cells, but sulforaphane treatment significantly suppressed the induction of cIAP-2. The present results revealed that sulforaphane enhances apoptosis in human colon cancer cells under co-culture with Lactobacillus-treated PBMCs via the TNFα signaling pathway.

8.
J Oleo Sci ; 68(8): 765-768, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31292340

RESUMO

γ-Oryzanol is a naturally occurring component of rice bran and consists of various steryl ferulates. The antioxidant activities of γ-oryzanol have mostly been demonstrated in cell-free systems. Therefore, we determined whether steryl ferulate of γ-oryzanol suppress spontaneous intracellular reactive oxygen species (ROS) in cell-based systems. We found that cycloartenyl ferulate and ß-sitosteryl ferulate suppressed spontaneous intracellular ROS in a similar way to N-acetylcysteine and α-tocopherol.


Assuntos
Antioxidantes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Ácidos Cumáricos/farmacologia , Fenilpropionatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sitosteroides/farmacologia , Células HT29 , Humanos
9.
Biochem Biophys Res Commun ; 505(4): 1203-1210, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30327144

RESUMO

Sulindac sulfone is a metabolite of sulindac, a non-steroidal anti-inflammatory drug (NSAID), without anti-inflammatory ability. However, sulindac sulfone has been reported to significantly reduce polyps in patients with colorectal adenomatous polyposis in clinical trials. Thus, sulindac sulfone is expected to be useful for the chemoprevention of neoplasia with few side effects related to anti-inflammatory ability. To date, the molecular targets of sulindac sulfone have not yet fully investigated. Therefore, in order to newly identify sulindac sulfone-binding proteins, we generated sulindac sulfone-fixed FG beads and purified sulindac sulfone-binding proteins from human colon cancer HT-29 cells. we identified mitochondrial outer membrane proteins voltage-dependent anion channel (VDAC) 1 and VDAC2 as novel molecular targets of sulindac sulfone, and sulindac sulfone directly bound to both VDAC1 and VDAC2. Double knockdown of VDAC1 and VDAC2 by siRNA inhibited growth and arrested the cell cycle at G1 phase in HT-29 cells. Depletion of VDAC1 and VDAC2 also inhibited the mTORC1 pathway with a reduction in cyclin D1. Interestingly, these effects were consistent with those of sulindac sulfone against human colon cancer cells, suggesting that sulindac sulfone negatively regulates the function of VDAC1 and VDAC2. In the present study, our data suggested that VDAC1 and VDAC2 are direct targets of sulindac sulfone which suppresses the mTORC1 pathway and induces G1 arrest.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Sulindaco/análogos & derivados , Canal de Ânion 1 Dependente de Voltagem/antagonistas & inibidores , Canal de Ânion 2 Dependente de Voltagem/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Pontos de Checagem do Ciclo Celular , Neoplasias do Colo/patologia , Células HT29 , Humanos , Sulindaco/química , Sulindaco/metabolismo , Sulindaco/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo
10.
Bioorg Med Chem ; 26(3): 775-785, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331452

RESUMO

Lysine-specific demethylase 1 (LSD1) is an attractive molecular target for cancer therapy. We have previously reported potent LSD1-selective inhibitors (i.e., NCD18, NCD38, and their analogs) consisting of trans-2-phenylcyclopropylamine (PCPA) or trans-2-arylcyclopropylamine (ACPA) and a lysine moiety that could form a γ-turn structure in the active site of LSD1. Herein we report the design, synthesis and evaluation of γ-turn mimetic compounds for further improvement of LSD1 inhibitory activity and anticancer activity. Among a series of γ-turn mimetic compounds synthesized by a Mitsunobu-reaction-based amination strategy, we identified 1n as a potent and selective LSD1 inhibitor. Compound 1n induced cell cycle arrest and apoptosis through histone methylation in human lung cancer cells. The γ-turn mimetics approach should offer new insights into drug design for LSD1-selective inhibitors.


Assuntos
Ciclopropanos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Domínio Catalítico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclopropanos/síntese química , Ciclopropanos/química , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Monoaminoxidase/química , Monoaminoxidase/metabolismo
11.
Oncol Rep ; 39(2): 627-632, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207153

RESUMO

In advanced bladder cancer, cisplatin-based chemotherapy has been the standard treatment for many years, but there are many problems in terms of side-effects. Recently, a number of clinical trials using molecular-targeted agents have been conducted, and new therapies are expected that could replace conventional cytotoxic chemotherapy. We herein report that concurrent treatment with fibroblast growth factor receptor (FGFR) inhibitor BGJ398 and the novel histone deacetylase (HDAC) inhibitor OBP-801/YM753/spiruchostatin A synergistically inhibited cell growth and markedly induced apoptosis in high-grade bladder cancer cells. This combination activated caspase-3, -8 and -9, and the pan-caspase inhibitor zVAD-fmk significantly reduced the apoptotic response to the combined treatment. The combination upregulated the expression of Bim, one of the pro-apoptotic molecules. In the present study, Bim siRNA efficiently reduced apoptosis induced by the co-treatment of BGJ398 and OBP-801. Therefore, the apoptosis induced by the combination was shown to be at least partially dependent on Bim. Taken together, these results suggest that the combination of BGJ398 and OBP-801 is a novel high potential therapeutic strategy for muscle-invasive bladder cancer.


Assuntos
Antineoplásicos/farmacologia , Proteína 11 Semelhante a Bcl-2/metabolismo , Caspases/metabolismo , Peptídeos Cíclicos/farmacologia , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico
12.
Wound Repair Regen ; 25(2): 224-233, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28120534

RESUMO

Keloids are fibroproliferative diseases characterized by the accumulation of an extracellular matrix including collagen. Various growth factors, or cytokines, and their receptors are overexpressed in keloids, and they are expected to be therapy targets. Sulforaphane, a dietary isothiocyanate, has recently shown anti-tumor, anti-inflammatory, and anti-fibrotic properties. In this study, we found that sulforaphane inhibited cell growth and reduced collagen at the mRNA and protein levels in keloid fibroblasts. Moreover, sulforaphane markedly suppressed the expression of IL-6 and α-SMA and inhibited Stat3 and Smad3 signaling pathways in keloid fibroblast KF112 cells. Sulforaphane induced G2/M cell-cycle arrest with the induction of p21 in KF112 cells. In addition, sulforaphane inhibited cell growth and suppressed the expression of collagen in keloid fibroblasts under a coculture with peripheral blood mononuclear cells. Furthermore, sulforaphane suppressed IL-6, Stat3, and Smad3 signaling in the coculture system. This study suggests that sulforaphane may be a novel keloid treatment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Isotiocianatos/farmacologia , Queloide/tratamento farmacológico , Queloide/patologia , Western Blotting , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Humanos , Interleucina-6 , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3 , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3 , Sulfóxidos
13.
Org Biomol Chem ; 14(36): 8576-85, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27548471

RESUMO

We describe the structure-activity relationship of various arylcyclopropylamines (ACPAs), which are potent LSD1 inhibitors. More than 45 ACPAs were synthesized rapidly by an unconventional method that we have recently developed, consisting of a C-H borylation and cross-coupling sequence starting from cyclopropylamine. We also generated NCD38 derivatives, which are known as LSD1 selective inhibitors, and discovered a more effective inhibitor compared to the original NCD38.


Assuntos
Aminas/farmacologia , Ciclopropanos/farmacologia , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Aminas/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclopropanos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Conformação Molecular , Relação Estrutura-Atividade
14.
Mol Cancer Ther ; 15(9): 2066-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27406983

RESUMO

The prognosis of muscle-invasive bladder cancer with metastasis is poor. There have been no therapeutic improvements for many years, and an innovative therapy for muscle-invasive bladder cancer has been awaited to replace the conventional cytotoxic chemotherapy. Here, we show a candidate method for the treatment of bladder cancer. The combined treatment with a novel histone deacetylase (HDAC) inhibitor, OBP-801, and celecoxib synergistically inhibited cell growth and markedly induced apoptosis through the caspase-dependent pathway in high-grade bladder cancer cells. Furthermore, the combined treatment induced expression of death receptor 5 (DR5). We identified that knockdown of DR5 by small interfering RNA (siRNA) significantly suppressed apoptosis by the combined treatment. Therefore, we conjectured that the apoptosis induced by OBP-801 and celecoxib is at least partially dependent on DR5. However, it was interesting that the combined treatment drastically suppressed expression of DR5 ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). These data suggest that there is no involvement of TRAIL in the induction of apoptosis by the combination, regardless of the dependence of DR5. Moreover, xenograft studies using human bladder cancer cells showed that the combined therapy suppressed tumor growth by upregulating expressions of DR5 and Bim. The inhibition of tumor growth was significantly more potent than that of each agent alone, without significant weight loss. This combination therapy provided a greater benefit than monotherapy in vitro and in vivo These data show that the combination therapy with OBP-801 and celecoxib is a potential novel therapeutic strategy for patients with muscle-invasive bladder cancer. Mol Cancer Ther; 15(9); 2066-75. ©2016 AACR.


Assuntos
Apoptose/efeitos dos fármacos , Celecoxib/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Peptídeos Cíclicos/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Dermatol Sci ; 78(1): 44-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25726712

RESUMO

BACKGROUND: Angiosarcoma is a rare and aggressive malignant neoplasm of endothelial cells. Recent studies have shown that the mTOR pathway is also aberrantly activated in cutaneous angiosarcoma. New therapeutic strategies are required because the prognosis of this disease is still poor. OBJECTIVE: The aim of the present study was to determine the driver gene of angiosarcoma useful for the screening of small molecule inhibitors. METHODS: We investigated the sensitivity of inhibitors for the PI3K/AKT/mTOR pathway in ISOS-1 and ISO-HAS cutaneous angiosarcoma cell lines. Flow cytometric analysis was conducted to evaluate cell-cycle progression and apoptosis. Western blot analyses were performed to elucidate the possible underlying mechanisms of growth inhibition. The colony formation assay was conducted to evaluate the clonogenic potential. We used the siRNA for PDK1 to examine the role of PDK1 on the growth of angiosarcoma cells. RESULTS: The PI3K inhibitor and mTOR inhibitor inhibited the growth of both cell lines in a dose-dependent manner. The PI3K inhibitor more effectively induced cell-cycle arrest at the G1 phase with the downregulated expression of cyclin D in ISOS-1 cells than the mTOR inhibitor. The PI3K inhibitor and mTOR inhibitor weakly but significantly induced G1 cell cycle arrest at the same degree in ISO-HAS cells. The expression of cyclin D was downregulated by the treatment with siRNA for PDK1, but not by the AKT inhibitor in ISOS-1 and ISO-HAS cells. The knock down of PDK1 with siRNA was more effective at reducing colony numbers than the mTOR inhibitor in ISOS-1 cells. CONCLUSION: These data showed that PDK1 played a pivotal role in the growth of angiosarcoma cells. Therefore, inhibition of PDK1, but not AKT, may be a more appropriate strategy than that of mTORC1 for the treatment of cutaneous angiosarcoma; the PDK1 inhibitor is promising as a therapeutic agent.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proliferação de Células , Hemangiossarcoma/enzimologia , Terapia de Alvo Molecular , Transdução de Sinais , Neoplasias Cutâneas/enzimologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D/metabolismo , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Hemangiossarcoma/tratamento farmacológico , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transfecção
16.
Sci Rep ; 4: 6000, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25102912

RESUMO

A combined therapy of sulindac sulfide and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising strategy for the treatment of cancer. Sulindac sulfide had been shown to induce the expression of death receptor 5 (DR5), a receptor for TRAIL, and sensitize cancer cells to TRAIL-induced apoptosis; however, the molecular mechanism underlying the upregulation of DR5 has not yet been elucidated. We demonstrate here that myeloid zinc finger 1 (MZF1) mediates the induction of DR5 by sulindac sulfide. Sulindac sulfide induced the expression of DR5 at the protein and mRNA levels in colon cancer SW480 cells. Furthermore, sulindac sulfide increased DR5 promoter activity. We showed that sulindac sulfide stimulated DR5 promoter activity via the -301 to -253 region. This region contained a putative MZF1-binding site. Site-directed mutations in the site abrogated the enhancement in DR5 promoter activity by sulindac sulfide. MZF1 directly bound to the putative MZF1-binding site of the DR5 promoter and the binding was increased by sulindac sulfide. The expression of MZF1 was also increased by sulindac sulfide, and MZF1 siRNA attenuated the upregulation of DR5 by sulindac sulfide. These results indicate that sulindac sulfide induces the expression of DR5 by up-regulating MZF1.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Sulindaco/análogos & derivados , Regulação para Cima/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Fragmentação do DNA/efeitos dos fármacos , Células HCT116 , Humanos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Sulindaco/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
17.
J Nat Prod ; 75(12): 2088-93, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23245566

RESUMO

Dehydrozingerone (1) is a pungent constituent present in the rhizomes of ginger (Zingiber officinale) and belongs structurally to the vanillyl ketone class. It is a representative of half the chemical structure of curcumin (2), which is an antioxidative yellow pigment obtained from the rhizomes of turmeric (Curcuma longa). Numerous studies have suggested that 2 is a promising phytochemical for the inhibition of malignant tumors, including colon cancer. On the other hand, there have been few studies on the potential antineoplastic properties of 1, and its mode of action based on a molecular mechanism is little known. Therefore, the antiproliferative effects of 1 were evaluated against HT-29 human colon cancer cells, and it was found that 1 dose-dependently inhibited growth at the G2/M phase with up-regulation of p21. Dehydrozingerone additionally led to the accumulation of intracellular ROS, although most radical scavengers could not clearly repress the cell-cycle arrest at the G2/M phase. Furthermore, two synthetic isomers of 1 (iso-dehydrozingerone, 3, and ortho-dehydrozingerone, 4) were also examined. On comparing of their activities, accumulation of intracellular ROS was found to be interrelated with growth-inhibitory effects. These results suggest that analogues of 1 may be potential chemotherapeutic agents for colon cancer.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias do Colo/prevenção & controle , Curcumina , Estirenos , Zingiberaceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Curcuma/metabolismo , Curcumina/análogos & derivados , Curcumina/química , Curcumina/isolamento & purificação , Curcumina/farmacologia , Fase G2/efeitos dos fármacos , Células HT29 , Humanos , Estrutura Molecular , Espécies Reativas de Oxigênio/análise , Estereoisomerismo , Estirenos/química , Estirenos/isolamento & purificação , Estirenos/farmacologia
18.
Cancer Sci ; 103(12): 2139-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22957647

RESUMO

In most human malignant tumors, retinoblastoma tumor-suppressor gene (RB) product is inactivated by phosphorylation. Therefore, cancer preventive agents or molecular-targeting agents can inhibit the tumor growth at G(1) phase through RB reactivation. However, little is known about the effectiveness of RB reactivating agents against malignancies with mutated RB. We report here that chemopreventive agent flavone, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, and histone deacetylase (HDAC) inhibitor trichostatin A (TSA) also induce G(1) phase arrest in malignant tumor cells with mutated RB. In human prostate cancer DU145 cells with mutated RB, flavone increased cyclin-dependent kinase (CDK) inhibitors p21 and p27, and reduced cdk4 and cdk6, resulting in decrement of phosphorylated RB family proteins p130 and p107. LY294002 also dephosphorylated p107 and p130 proteins, whereas TSA dephosphorylated p130, but not p107. Furthermore, flavone induced G(1) phase arrest in both mouse embryo fibroblast (MEF) wild-type and MEF RB(-/-) cells, but did not do so in RB, p107, and p130 triple-knockout MEF cells. These results suggested that p130 and p107 contributed to G(1) phase arrest by flavone in RB-mutated cells. However, flavone induced tumor suppressor microRNA miR-34a with reduction of E2F1 and E2F3, known to be downregulated by miR-34a, raising the possibility that miR-34a might partially contribute to G(1) arrest by flavone. These results raise the possibility that RB reactivating chemopreventive agents or molecular targeting agents might also be effective against a variety of malignant tumor cells with mutant RB.


Assuntos
Cromonas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteína do Retinoblastoma/genética , Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Histona Desacetilases/metabolismo , Humanos , Mutação , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/metabolismo
19.
Mol Cancer Ther ; 11(10): 2294-300, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22784708

RESUMO

Methylglyoxal is an essential component in glycolysis and is known to be an inducer of apoptosis. Glyoxalase I (GLO1) metabolizes and inactivates methylglyoxal. GLO1 is known to be overexpressed in cancer cells and causes resistance to anticancer agents. We show for the first time that methylglyoxal treatment or the silencing of GLO1 enhances sensitivity to the promising anticancer agent TRAIL in malignant tumor cells. Methylglyoxal suppressed the expression of antiapoptotic factors, X-linked inhibitor of apoptosis protein (XIAP), survivin, cIAP1, Bcl-2, and Bcl-xL, without affecting TRAIL receptors, DR4 and DR5. Knockdown of XIAP or survivin by siRNA also enhanced TRAIL-induced apoptosis, indicating that downregulation of XIAP and survivin expression by methylglyoxal contributes to the enhancement of TRAIL activity. Furthermore, methylglyoxal decreased NF-κB activity with or without TRAIL treatment. On the other hand, the knockdown of GLO1 by siRNA enhanced TRAIL-induced apoptosis via the downregulation of XIAP and survivin expression. In conclusion, our results strongly suggest that sensitivity to TRAIL is increased by inhibition of the glyoxalase pathway and that the combination of TRAIL with methylglyoxal or glyoxalase inhibitors may be useful for a novel combination chemotherapy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Regulação para Baixo/efeitos dos fármacos , Lactoilglutationa Liase/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/genética , Ensaios de Seleção de Medicamentos Antitumorais , Fase G1/efeitos dos fármacos , Fase G1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Lactoilglutationa Liase/metabolismo , NF-kappa B/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Aldeído Pirúvico/farmacologia , Survivina , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
20.
Mol Nutr Food Res ; 54(4): 559-65, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19937855

RESUMO

Cucurbitacin B (cucB) is a triterpenoid constituent of Cucurbitaceae vegetables and a promising phytochemical for cancer prevention. However, the mechanism of anti-tumor activity of cucB remains unknown, especially in colon cancers. Here, we demonstrate for the first time that cucB inhibited growth of human colon cancer SW480 cells through a reactive oxygen species (ROS)-dependent mechanism. CucB induced G(2) phase arrest and apoptosis in a dose-dependent manner. At the molecular level, cucB reduced the expression of cyclin B1 and cdc25C proteins and activated caspases in SW480 cells. On the other hand, the state of phosphorylation of signaling transducer and activator of transcription 3 (STAT3) was unchanged. We found that cucB increased intracellular ROS levels, and N-acetylcysteine, a well-known antioxidant, reduced the changes in expression of the molecules, and suppressed both G(2) arrest and apoptosis. These results suggested that cucB induced G(2) arrest and apoptosis through a STAT3-independent but ROS-dependent mechanism in SW480 cells.


Assuntos
Adenocarcinoma/patologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Fase G2/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Acetilcisteína/análise , Adenocarcinoma/prevenção & controle , Anticarcinógenos , Linhagem Celular Tumoral , Neoplasias do Colo/prevenção & controle , Humanos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...