Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 13(18): 1379-1389, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34517750

RESUMO

Biomarkers are an important drug developmental tool. Assessment of quantitative analytical methods of biomarkers is not included in any regulatory documents in Japan. Use of biomarkers in clinical evaluations and supporting the post-marketing evaluation of drug efficacy and/or adverse reactions requires assessment and full validation of analytical methods for these biomarkers. The Biomarker Analytical Method Validation Study Group is a research group in Japan comprising industry and regulatory experts. Group members discussed and prepared this 'points to consider document' covering measurements of endogenous metabolites/peptides/proteins by ligand binding assays and chromatographic methods with or without mass spectrometry. We hope this document contributes to the global harmonization of biomarker assay validation.


Assuntos
Biomarcadores/metabolismo , Desenvolvimento de Medicamentos/métodos , Humanos
7.
Clin Pract ; 4(1): 605, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24847429

RESUMO

A 40-year old woman, gravida 4, para 4, presented with sudden lower abdominal pain and severe vaginal bleeding at 17 weeks of gestation. Clinical symptoms and ultrasonographic finding revealed placental abruption. The volume of bleeding was heavy and led to disseminated intravascular coagulation and hypovolemic shock. We performed blood transfusion and therapy to treat the critical condition. However, the mother's condition continued to worsen. Therefore, we performed a hysterotomy and aborted the pregnancy to save the mother. Since heavy bleeding caused by placental abruption leading to a life-threatening condition for a mother before the 20 weeks of gestation is very rare, the present case is an important case study.

8.
Clin Pract ; 1(4): e105, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24765346

RESUMO

Uterine inversion is a rare complication of the postpartum period and an even rarer complication of the nonpuerperal period. A 47-year-old woman, gravid 2, para 2, was referred to our hospital with blood-stained leucorrhoea and severe anemia. Magnetic resonance imaging (MRI) scans showed a U-shaped uterine cavity and the pedicles of a tumor attached to the uterine fundi. The patient underwent an abdominal hysterectomy. The diagnosis of uterine inversion was confirmed during the operation. MRI should be performed for the diagnosis of this rare disease.

9.
Kidney Int ; 74(11): 1434-43, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19008912

RESUMO

Renal hypertrophy and deposition of extracellular matrix proteins are consistent findings in diabetic nephropathy and these processes can be halted or reversed by euglycemic control. Using DNA microarray analysis of glomerular RNA from control and diabetic rats we found that the expression levels of insulin-like growth factor 1 receptor (IGF-1R) were increased while those of suppressor of cytokine signaling 2 (SOCS2) and STAT5 were decreased. All of these changes were normalized by islet cell transplantation. Overexpression of SOCS2 in rat mesangial cells inhibited IGF-1-induced activation of extracellular signal-regulated kinase, which subsequently reduced type IV collagen and DNA synthesis, an effect due to interaction of SOCS2 with IGF-1R. Inhibition of SOCS2 overexpression by small interfering RNA suppressed IGF-1R-mediated actions by preventing phosphorylation of tyrosine 317 in the p66Shc adaptor protein; however, overexpression of either SOCS1 or SOCS3 did not affect IGF-1R signaling. Insulin directly increased STAT5 and SOCS2 expression in mesangial cells. This study shows that insulin can inhibit the mitogenic action of IGF-1 in mesangial cells by regulating STAT5/SOCS2 expression. Insulin deficiency may contribute to the mesangial expansion found in diabetes through reduced STAT5/SOCS2 expression.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/fisiologia , Insulina/farmacologia , Células Mesangiais/metabolismo , Receptor IGF Tipo 1/genética , Fator de Transcrição STAT5/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Perfilação da Expressão Gênica , Transplante das Ilhotas Pancreáticas , Glomérulos Renais , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Proteínas Supressoras da Sinalização de Citocina/efeitos dos fármacos
10.
Diabetes ; 57(11): 3099-107, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18728233

RESUMO

OBJECTIVE: Mesenchymal stem cells (MSCs) have been reported to secrete various cytokines that exhibit angiogenic and neurosupportive effects. This study was conducted to investigate the effects of MSC transplantation on diabetic polyneuropathy (DPN) in rats. RESEARCH DESIGN AND METHODS: MSCs were isolated from bone marrow of adult rats and transplanted into hind limb skeletal muscles of rats with an 8-week duration of streptozotocin (STZ)-induced diabetes or age-matched normal rats by unilateral intramuscular injection. Four weeks after transplantation, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) productions in transplanted sites, current perception threshold, nerve conduction velocity (NCV), sciatic nerve blood flow (SNBF), capillary number-to-muscle fiber ratio in soleus muscles, and sural nerve morphometry were evaluated. RESULTS: VEGF and bFGF mRNA expression were significantly increased in MSC-injected thigh muscles of STZ-induced diabetic rats. Furthermore, colocalization of MSCs with VEGF and bFGF in the transplanted sites was confirmed. STZ-induced diabetic rats showed hypoalgesia, delayed NCV, decreased SNBF, and decreased capillary number-to-muscle fiber ratio in soleus muscles, which were all ameliorated by MSC transplantation. Sural nerve morphometry showed decreased axonal circularity in STZ-induced diabetic rats, which was normalized by MSC transplantation. CONCLUSIONS: These results suggest that MSC transplantation could have therapeutic effects on DPN through paracrine actions of growth factors secreted by MSCs.


Assuntos
Células da Medula Óssea/metabolismo , Neuropatias Diabéticas/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/patologia , Ensaio de Imunoadsorção Enzimática , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Músculo Esquelético/metabolismo , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Exp Neurol ; 213(2): 381-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18675804

RESUMO

BACKGROUND: Schwann cells (SCs) have been supposed to play prominent roles in axonal regeneration under various diseases. Here, to evaluate the direct interaction between SCs and dorsal root ganglion (DRG) neurons under a diabetic condition, the effects of Schwann cell-conditioned media on neurite outgrowth of DRG neurons were investigated. METHODS: Immortalized mouse Schwann cells (IMS) were cultured under 5.5 mM glucose (NG) or 30 mM glucose (HG) conditions for 4 days. IMS-conditioned media (IMS-media) were added to the culture media of neurons isolated from 8-week-old DDY mice. Neurons were cultured for 48 h with or without mouse recombinant NGF (mrNGF) or nerve growth factor (NGF) neutralizing antibody. The concentrations of NGF in IMS-media by ELISA and neurite outgrowth by a computed image analysis system were evaluated. RESULTS: Neurite outgrowth was significantly enhanced by IMS-media (IMS-media (-): 177+/-177 microm, IMS-media (+): 1648+/-726). The neurite outgrowth cultured with IMS-media obtained under the HG condition was significantly reduced compared with that under the NG condition (NG: 1474+/-652, HG: 734+/-331). The NGF concentrations were significantly lower in IMS-media under the HG condition than in those under the NG condition. The accelerated neurite outgrowth by IMS-media was inhibited by NGF neutralizing antibody. CONCLUSIONS: These results suggest that SCs play important roles in neurite outgrowth of DRG neurons, and that the decreased NGF secretion by SCs under the diabetic condition would cause a defect of axonal regeneration, resulting in the development of diabetic neuropathy.


Assuntos
Gânglios Espinais/metabolismo , Glucose/administração & dosagem , Fatores de Crescimento Neural/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Células de Schwann/metabolismo , Animais , Linhagem Celular Transformada , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/crescimento & desenvolvimento , Masculino , Camundongos , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos
12.
Biochem Biophys Res Commun ; 357(1): 270-5, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17418096

RESUMO

Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Metformina/administração & dosagem , Aldeído Pirúvico/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Células de Schwann/citologia , Células de Schwann/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Camundongos , Células de Schwann/efeitos dos fármacos
13.
Diabetes ; 56(5): 1410-20, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17363743

RESUMO

High-density oligonucleotide arrays were used to compare gene expression of rat hearts from control, untreated diabetic, and diabetic groups treated with islet cell transplantation (ICT), protein kinase C (PKC)beta inhibitor ruboxistaurin, or ACE inhibitor captopril. Among the 376 genes that were differentially expressed between untreated diabetic and control hearts included key metabolic enzymes that account for the decreased glucose and increased free fatty acid utilization in the diabetic heart. ICT or insulin replacements reversed these gene changes with normalization of hyperglycemia, dyslipidemia, and cardiac PKC activation in diabetic rats. Surprisingly, both ruboxistaurin and ACE inhibitors improved the metabolic gene profile (confirmed by real-time RT-PCR and protein analysis) and ameliorated PKC activity in diabetic hearts without altering circulating metabolites. Functional assessments using Langendorff preparations and (13)C nuclear magnetic resonance spectroscopy showed a 36% decrease in glucose utilization and an impairment in diastolic function in diabetic rat hearts, which were normalized by all three treatments. In cardiomyocytes, PKC inhibition attenuated fatty acid-induced increases in the metabolic genes PDK4 and UCP3 and also prevented fatty acid-mediated inhibition of basal and insulin-stimulated glucose oxidation. Thus, PKCbeta or ACE inhibitors may ameliorate cardiac metabolism and function in diabetes partly by normalization of fuel metabolic gene expression directly in the myocardium.


Assuntos
Angiotensinas/antagonistas & inibidores , Diabetes Mellitus Experimental/tratamento farmacológico , Insulina/uso terapêutico , Miocárdio/enzimologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Captopril/uso terapêutico , Membrana Celular/enzimologia , Diabetes Mellitus Experimental/cirurgia , Implantes de Medicamento , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Ativados por Proliferador de Peroxissomo/genética , Proteína Quinase C/metabolismo , Proteína Quinase C beta , RNA/genética , Ratos , Ratos Endogâmicos Lew , Valores de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Obstet Gynaecol Res ; 33(1): 83-6, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17212672

RESUMO

Placental mesenchymal dysplasia is a very rare disorder in which the placenta is enlarged and contains cystic villi and dilated vasculature. The authors present a new case report of placental mesenchymal dysplasia with severe fetal growth restriction.


Assuntos
Doenças Placentárias/diagnóstico , Adulto , Feminino , Retardo do Crescimento Fetal/etiologia , Humanos , Nascido Vivo , Oligo-Hidrâmnio , Placenta/irrigação sanguínea , Doenças Placentárias/patologia , Gravidez
15.
Diabetes ; 55(11): 3112-20, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17065350

RESUMO

Diabetes induces the activation of several protein kinase C (PKC) isoforms in the renal glomeruli. We used PKC-beta(-/-) mice to examine the action of PKC-beta isoforms in diabetes-induced oxidative stress and renal injury at 8 and 24 weeks of disease. Diabetes increased PKC activity in renal cortex of wild-type mice and was significantly reduced (<50% of wild-type) in diabetic PKC-beta(-/-) mice. In wild-type mice, diabetes increased the translocation of PKC-alpha and -beta1 to the membrane, whereas only PKC-alpha was elevated in PKC-beta(-/-) mice. Increases in urinary isoprostane and 8-hydroxydeoxyguanosine, parameters of oxidative stress, in diabetic PKC-beta(-/-) mice were significantly reduced compared with diabetic wild-type mice. Diabetes increased NADPH oxidase activity and the expressions of p47(phox), Nox2, and Nox4 mRNA levels in the renal cortex and were unchanged in diabetic PKC-beta(-/-) mice. Increased expression of endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-beta, connective tissue growth factor (CTGF), and collagens IV and VI found in diabetic wild-type mice was attenuated in diabetic PKC-beta(-/-) mice. Diabetic PKC-beta(-/-) mice were protected from renal hypertrophy, glomerular enlargement, and hyperfiltration observed in diabetic wild-type mice and had less proteinuria. Lack of PKC-beta can protect against diabetes-induced renal dysfunction, fibrosis, and increased expressions of Nox2 and -4, ET-1, VEGF, TGF-beta, CTGF, and oxidant production.


Assuntos
Citocinas/genética , Diabetes Mellitus Experimental/fisiopatologia , Estresse Oxidativo/fisiologia , Proteína Quinase C/genética , Animais , Glicemia/metabolismo , Pressão Sanguínea , Peso Corporal , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/prevenção & controle , Ativação Enzimática , Fibrose/prevenção & controle , Regulação da Expressão Gênica , Taxa de Filtração Glomerular , Córtex Renal/enzimologia , Córtex Renal/fisiologia , Córtex Renal/fisiopatologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteína Quinase C/deficiência , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Valores de Referência
16.
FASEB J ; 20(8): 1203-5, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16672634

RESUMO

PPARgamma agonists, thiazolidinediones, cause fluid retention and edema due to unknown mechanisms. We characterized the effect of rosiglitazone (RSG), a thiazolidinedione, to induce vascular permeability, vascular endothelial growth factor (VEGF) expression, and protein kinase C (PKC) activation with edema and wt gain. In lean, fatty and diabetic Zucker rats, and endothelial insulin receptor knockout mice, RSG increased wt and vascular permeability, selectively in fat and retina, but not in heart or skeletal muscle. H2O content and wt of epididymal fat were increased by RSG and correlated to increases in capillary permeability in fat and body wt. RSG induced VEGF mRNA expression and PKC activation in fat and retina up to 2.5-fold. Ruboxistaurin, a PKCbeta isoform inhibitor, in the latter 2 wk of a 4-wk study, normalized vascular permeability in fat and decreased total wt gain, H2O content, and wt of fat vs. RSG alone but did not decrease VEGF expression, basal permeability, or food intake. Finally, RSG did not increase wt or vascular permeability in PKCbeta knockout vs. control mice. Thus, thiazolidinedione's effects on edema and wt are partially due to an adipose tissue-selective activation of PKC and vascular permeability that may be prevented by PKCbeta inhibition.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Edema/induzido quimicamente , Hipoglicemiantes/toxicidade , PPAR gama/agonistas , Proteína Quinase C/metabolismo , Tiazolidinedionas/toxicidade , Aumento de Peso/efeitos dos fármacos , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/enzimologia , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/fisiopatologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C beta , Ratos , Ratos Zucker , Receptor de Insulina/genética , Receptor de Insulina/fisiologia , Rosiglitazona , Tiazolidinedionas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Diabetes Metab Res Rev ; 19(2): 131-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12673781

RESUMO

BACKGROUND: Polyol pathway hyperactivity-induced decreases in protein kinase C (PKC) activities have been proposed as a pathogenic mechanism of diabetic neuropathy. Increased PKC activities have recently been invoked in the pathogenesis of other diabetic complications, especially retinopathy, nephropathy, and macroangiopathy. However, it remains unclear whether PKC activities in neural cells such as Schwann cells are increased, decreased, or unchanged. This study investigated the effects of high glucose and increased polyol pathway activity on neural cell growth and PKC activities. METHODS: Rat Schwannoma cells were cultured in 5.5 or 20 mM glucose in the presence or absence of an aldose reductase inhibitor, epalrestat (1 microM) for 14 days. Proliferation activities, PKC activities, and the protein expression of PKC isoforms were measured. RESULTS: Proliferation and PKC activities under the 20 mM glucose condition were significantly decreased compared to those under the 5.5 mM glucose condition and were prevented by epalrestat. Among PKC isoforms, the protein expression of PKC-alpha under the 20 mM glucose condition was significantly reduced compared to that under the 5.5 mM glucose condition. Epalrestat significantly inhibited the decreased expression of PKC-alpha protein. There were no significant changes in the protein expression of PKC-beta. CONCLUSIONS: These results suggest that PKC, especially PKC-alpha activity, is decreased in Schwann cells exposed to high glucose and that this deficit is mediated through polyol pathway hyperactivity.


Assuntos
Neuropatias Diabéticas/enzimologia , Neurilemoma , Polímeros/metabolismo , Proteína Quinase C/metabolismo , Rodanina/análogos & derivados , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Frutose/metabolismo , Glucose/farmacologia , Inositol/metabolismo , Proteína Quinase C beta , Proteína Quinase C-alfa , Proteína Quinase C-delta , Ratos , Rodanina/farmacologia , Sorbitol/metabolismo , Tiazolidinas , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/enzimologia , Células Tumorais Cultivadas/metabolismo
18.
Diabetes Res Clin Pract ; 60(1): 1-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12639759

RESUMO

The pathogenesis of pericyte loss, an initial deficit in the early stage of diabetic retinopathy, remains unclear. Recent studies have suggested that polyol pathway hyperactivity and apoptosis may be involved in pericyte loss. The mechanisms of the glucose-induced apoptosis in retinal pericytes were investigated to evaluate the pathogenesis of diabetic retinopathy. Under the 20 mM glucose condition, intracellular calcium concentrations and caspase-3 activities were significantly increased, and reduced glutathione (GSH) contents were significantly decreased compared with those under the 5.5 mM glucose condition. These abnormalities were all significantly prevented by an aldose reductase inhibitor, SNK-860. Glucose-induced apoptosis was partially but significantly prevented by SNK-860, an inhibitor of calcium-dependent cysteine protease, calpain, or GSH supplementation, and completely normalized by a caspase-3 inhibitor. These observations suggest that glucose-induced apoptosis in retinal pericytes, as one of the pathogenic factors of diabetic retinopathy, would be mediated through an aldose reductase-sensitive pathway including calcium-calpain cascade and increased oxidative stress, and that caspase-3 would be located furthest downstream of these apoptotic signals.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/farmacologia , Pericitos/efeitos dos fármacos , Polímeros/metabolismo , Aldeído Redutase/antagonistas & inibidores , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Caspase 1/metabolismo , Bovinos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citosol/metabolismo , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes , Glutationa/metabolismo , Pericitos/citologia , Pericitos/fisiologia , Vasos Retinianos
19.
Diabetes Metab Res Rev ; 18(5): 395-402, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12397582

RESUMO

BACKGROUND: The transition metal-catalyzed reaction is a major source of oxygen free radicals, which play an important role in vascular dysfunction leading to ischemia in diabetic tissues. The inhibition of polyol pathway hyperactivity has been reported to ameliorate neurovascular abnormalities in diabetic rats and has been proposed to improve the oxygen free radical scavenging capacity. The present study was conducted to compare the effect of a transition metal chelating agent, trientine (TRI), on diabetic neuropathy with that of an aldose reductase inhibitor, NZ-314 (NZ). METHODS: Diabetic rats were divided into three groups: (1). untreated, (2). TRI-treated, and (3). NZ-treated. TRI (20 mg/kg) or NZ (100 mg/kg) was administered by gavage or chow containing NZ, respectively, for 8 weeks. Motor nerve conduction velocity (MNCV), coefficient of variation of the R - R interval on electrocardiogram (CVr-r), sciatic nerve blood flow (SNBF), platelet aggregation activities, and serum concentrations of malondialdehyde were measured. RESULTS: Untreated diabetic rats showed delayed MNCV, decreased CV(R-R), and reduced SNBF compared to normal rats. TRI or NZ completely prevented these deficits. Platelet hyperaggregation activities in diabetic rats were prevented by NZ, but not by TRI. Increased concentrations of malondialdehyde in diabetic rats were partially but significantly ameliorated by either TRI or NZ. CONCLUSIONS: These observations suggest that increased free radical formation through the transition metal-catalyzed reaction plays an important role in the development of diabetic neuropathy and that the preventive effect of an aldose reductase inhibitor on diabetic neuropathy may also be mediated by decreasing oxygen free radicals.


Assuntos
Quelantes/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Aldeído Redutase/antagonistas & inibidores , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo/fisiologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Eletrocardiografia , Masculino , Malondialdeído/sangue , Metais/antagonistas & inibidores , Metais/metabolismo , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Agregação Plaquetária/efeitos dos fármacos , Polímeros/metabolismo , Pirimidinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Valores de Referência , Nervo Isquiático/irrigação sanguínea , Nervo Isquiático/efeitos dos fármacos , Tiazóis/farmacologia , Trientina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA