Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 15(1): 355, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463286

RESUMO

OBJECTIVE: Type 2 diabetes mellitus (T2D) is the result of a dysregulation of insulin production and signalling, leading to an increase in both glucose concentration and pro-inflammatory cytokines such as interleukin (IL)-6 and tumour necrosis factor (TNF)-α. Previous work showed that T2D patients exhibited immune dysfunction associated with increased adhesion molecule expression on endothelial cell surfaces, accompanied by decreased neutrophil rolling velocity on the endothelial cell surface. Changes in cell rolling adhesion have direct vascular and immune complications such as atherosclerosis and reduced healing time in T2D patients. While previous studies focused primarily on how endothelial cells affect neutrophil rolling under T2D conditions, little is known about changes to neutrophils that affect their rolling. In this study, we aim to show how the rolling behaviour of neutrophils is affected by T2D conditions on a controlled substrate. RESULTS: We found that neutrophils cultured in T2D-serum mimicking media increased cell rolling velocity compared to neutrophils under normal conditions. Specifically, glucose alone is responsible for higher rolling velocity. While cytokines further increase the rolling velocity, they also reduce the cell size. Both glucose and cytokines likely reduce the function of P-selectin Glycoprotein Ligand-1 (PSGL-1) on neutrophils.


Assuntos
Diabetes Mellitus Tipo 2 , Neutrófilos , Humanos , Células Endoteliais , Aderências Teciduais , Glucose/farmacologia , Citocinas , Interleucina-6
2.
Biomolecules ; 12(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35883439

RESUMO

Melatonin is a human neurotransmitter and plant signalling metabolite that perceives and directs plant metabolism. The mechanisms of melatonin action in plants remain undefined. We hypothesized that roots have a melatonin-specific receptor and/or transporter that can respond to melatonin-mediating pharmaceuticals. To test this hypothesis Arabidopsis seedlings were grown with melatonin pharmaceutical receptor agonists: ramelteon and tasimelteon, and/or antagonists: luzindole and 4-P-PDOT. Ramelteon was found both to mimic and competitively inhibit melatonin metabolism in plants. Due to the higher selectivity of ramelteon for the MT1 receptor type in humans, a sequence homology search for MT1 in Arabidopsis identified the rhomboid-like protein 7 (RBL7). In physiological studies, Arabidopsis rbl7 mutants were less responsive to ramelteon and melatonin. Quantum dot visualizations of the effects of ramelteon on melatonin binding to root cell membranes revealed a potential mechanism. We propose that RBL7 is a melatonin-interacting protein that directs root architecture and growth in a mechanism that is responsive to environmental factors.


Assuntos
Arabidopsis , Melatonina , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Humanos , Mamíferos/metabolismo , Melatonina/farmacologia , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/metabolismo
3.
J Vis Exp ; (175)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34633369

RESUMO

Rolling adhesion, facilitated by selectin-mediated interactions, is a highly dynamic, passive motility in recruiting leukocytes to the site of inflammation. This phenomenon occurs in postcapillary venules, where blood flow pushes leukocytes in a rolling motion on the endothelial cells. Stable rolling requires a delicate balance between adhesion bond formation and their mechanically-driven dissociation, allowing the cell to remain attached to the surface while rolling in the direction of flow. Unlike other adhesion processes occurring in relatively static environments, rolling adhesion is highly dynamic as the rolling cells travel over thousands of microns at tens of microns per second. Consequently, conventional mechanobiology methods such as traction force microscopy are unsuitable for measuring the individual adhesion events and the associated molecular forces due to the short timescale and high sensitivity required. Here, we describe our latest implementation of the adhesion footprint assay to image the P-selectin: PSGL-1 interactions in rolling adhesion at the molecular level. This method utilizes irreversible DNA-based tension gauge tethers to produce a permanent history of molecular adhesion events in the form of fluorescence tracks. These tracks can be imaged in two ways: (1) stitching together thousands of diffraction-limited images to produce a large field of view, enabling the extraction of adhesion footprint of each rolling cell over thousands of microns in length, (2) performing DNA-PAINT to reconstruct super-resolution images of the fluorescence tracks within a small field of view. In this study, the adhesion footprint assay was used to study HL-60 cells rolling at different shear stresses. In doing so, we were able to image the spatial distribution of the P-selectin: PSGL-1 interaction and gain insight into their molecular forces through fluorescence intensity. Thus, this method provides the groundwork for the quantitative investigation of the various cell-surface interactions involved in rolling adhesion at the molecular level.


Assuntos
Células Endoteliais , Leucócitos , Adesão Celular , Humanos , Estresse Mecânico , Vênulas
4.
Sci Adv ; 7(34)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34407937

RESUMO

Rolling adhesion is a unique process in which the adhesion events are short-lived and operate under highly nonequilibrium conditions. These characteristics pose a challenge in molecular force quantification, where in situ measurement of these forces cannot be achieved with molecular force sensors that probe near equilibrium. Here, we demonstrated a quantitative adhesion footprint assay combining DNA-based nonequilibrium force probes and modeling to measure the molecular force involved in fast rolling adhesion. We were able to directly profile the ensemble molecular force distribution in our system during rolling adhesion with a dynamic range between 0 and 18 pN. Our results showed that the shear stress driving bead rolling motility directly controls the molecular tension on the probe-conjugated adhesion complex. Furthermore, the shear stress can steer the dissociation bias of components within the molecular force probe complex, favoring either DNA probe dissociation or receptor-ligand dissociation.

5.
Biophys J ; 120(12): 2511-2520, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33932434

RESUMO

Leukocyte rolling adhesion, facilitated by selectin-mediated interactions, is a highly dynamic process in which cells roll along the endothelial surface of blood vessel walls to reach the site of infection. The most common approach to investigate cell-substrate adhesion is to analyze the cell rolling velocity in response to shear stress changes. It is assumed that changes in rolling velocity indicate changes in adhesion strength. In general, cell rolling velocity is studied at the population level as an average velocity corresponding to given shear stress. However, no statistical investigation has been performed on the instantaneous velocity distribution. In this study, we first developed a method to remove systematic noise and revealed the true velocity distribution to exhibit a log-normal profile. We then demonstrated that the log-normal distribution describes the instantaneous velocity at both the population and single-cell levels across the physiological flow rates. The log-normal parameters capture the cell motion more accurately than the mean and median velocities, which are prone to systematic error. Lastly, we connected the velocity distribution to the molecular adhesion force distribution and showed that the slip-bond regime of the catch-slip behavior of the P-selectin/PSGL-1 interaction is responsible for the variation of cell velocity.


Assuntos
Selectina L , Selectina-P , Adesão Celular , Migração e Rolagem de Leucócitos , Neutrófilos , Estresse Mecânico
6.
Phys Biol ; 17(1): 011001, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387091

RESUMO

Molecular force sensors (MFSs) have grown to become an important tool to study the mechanobiology of cells and tissues. They provide a minimally invasive means to optically report mechanical interactions at the molecular level. One of the challenges in molecular force sensor studies is the interpretation of the fluorescence readout. In this review, we divide existing MFSs into three classes based on the force-sensing mechanism (reversibility) and the signal output (analog/digital). From single-molecule force spectroscopy (SMFS) perspectives, we provided a critical discussion on how the sensors respond to force and how the different sensor designs affect the interpretation of their fluorescence readout. Lastly, the review focuses on the limitations and attention one must pay in designing MFSs and biological experiments using them; in terms of their tunability, signal-to-noise ratio (SNR), and perturbation of the biological system under investigation.


Assuntos
Mecanotransdução Celular , Imagem Individual de Molécula/métodos , Estresse Mecânico
7.
J Pineal Res ; 66(1): e12527, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30267543

RESUMO

Melatonin and serotonin are important phytochemicals enabling plants to redirect growth in response to environmental stresses. Despite much research on their biosynthetic routes, localization of their biosynthetic enzymes and recent identification of a phytomelatonin receptor, localization of the molecules themselves has to date not been possible. Elucidation of their locations in living tissues can provide an effective tool to facilitate indolamine research across systems including both plants and animals. In this study, we employed a novel technique, quantum dot nanoparticles, to directly visualize melatonin and serotonin in axenic roots. Melatonin was absorbed through epidermal cells, travelled laterally, and accumulated in endodermal and rapidly dividing pericycle cells. Serotonin was absorbed by cells proximal to the crown with rapid polar movement toward the root tip. Thermal stress disrupted localization and dispersed melatonin and serotonin across cells. These data demonstrate the natural movement of melatonin and serotonin in roots directing cell growth and suggest that plants have a mechanism to disperse the indolamines throughout tissues as antioxidants in response to environmental stresses.


Assuntos
Hypericum/metabolismo , Melatonina/metabolismo , Serotonina/metabolismo , Regulação da Expressão Gênica de Plantas , Pontos Quânticos , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA