Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 118(50): 11688-95, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25478995

RESUMO

1,1,1-Trifluoroethane (CH3CF3) has been frequently used as a chemical thermometer or an internal standard in shock tube studies to determine relative rates of chemical reactions. The rate constants for the thermal decomposition of CH3CF3 were recently reported to have anomalous pressure dependence in the high-temperature falloff region. In the present study, the kinetics of the CH3CF3 decomposition were reinvestigated using shock tube/laser absorption (ST/LA) spectroscopy and single-pulse shock tube (SPST) methods over the temperature range 1163-1831 K at pressures from 95 to 290 kPa. The present rate constants are 2-3 times smaller than those reported in previous single-pulse experiments performed at near high-pressure limit conditions. The recommended rate constant expression, k = 5.71 × 10(46)T(-9.341) exp(-47073 K/T) s(-1), was obtained over the temperature range 1000-1600 K with uncertainties of ±40% at temperatures below 1300 K and ±32% at 1600 K. The rate constants at the high-temperature region showed clear falloff behavior and were in good agreement with recent high-temperature experiments. The falloff rate constants could not be reproduced by a standard RRKM/master-equation model; this study provides additional evidence for the unusual pressure dependence previously reported for this reaction. Additionally, the rate constants for the decomposition of 1,1-difluoroethylene (CH2CF2) were determined over the temperature range 1650-2059 K at pressures of 100 and 205 kPa, and were reproduced by the RRKM/master-equation calculation with an average downward energy transfer of 900 cm(-1).

2.
Anal Chem ; 86(17): 8547-52, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25109344

RESUMO

A nanopipette containing a solution of bis(benzo-15-crown-5) dissolved in 1,6-dichlorohexane was used as an ion-selective electrode (ISE) to probe K(+) for shear force-based constant-distance scanning electrochemical microscopy (SECM). In a previous study, the ISE responded only at low K(+) concentrations ([K(+)] < 1 mM), due to the depletion of the bis(benzo-15-crown-5) at the oil/water interface at high K(+) concentrations and the unstable response of the tip at the oil/water interface for shear force and current detection. In the present study, a nanopipette reshaped by heating and with the hydrophobic layer removed was used as the ISE. This modified ISE enabled a rapid response to changes in K(+) flux at a physiological concentration of K(+) and allowed SECM imaging on a nanometer scale. The fabricated nano-ISE was used as a probe for shear force-based SECM. Topography and K(+) flux images were obtained simultaneously at a polycarbonate membrane filter with 5 µm pores and human embryonic kidney 293 cells (HEK293). Several areas containing a K(+) flux larger than the surrounding areas were found in the SECM images of the HEK293 cells, which indicated the existence of K(+) channels.


Assuntos
Microscopia Eletroquímica de Varredura , Potássio/análise , Técnicas Eletroquímicas , Células HEK293 , Humanos , Eletrodos Seletivos de Íons , Íons/química , Nanotecnologia , Óleos/química , Água/química
3.
Combust Flame ; 160(11)2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24273333

RESUMO

The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200-1350 K, pressures from 2-2.5 atm and residence times of approximately 2 ms. Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350-1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820-1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770-1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0. Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6-1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms. A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments. Numerous proposals are made on the mechanism and kinetics of the previously unexplored intermediate temperature combustion pathways of 25DMF. Hydroxyl radical addition to the furan ring is highlighted as an important fuel consuming reaction, leading to the formation of methyl vinyl ketone and acetyl radical. The chemically activated recombination of HȮ2 or CH3Ȯ2 with the 5-methyl-2-furanylmethyl radical, forming a 5-methyl-2-furylmethanoxy radical and ȮH or CH3Ȯ radical is also found to exhibit significant control over ignition delay times, as well as being important reactions in the prediction of species profiles in a JSR. Kinetics for the abstraction of a hydrogen atom from the alkyl side-chain of the fuel by molecular oxygen and HȮ2 radical are found to be sensitive in the estimation of ignition delay times for fuel-air mixtures from temperatures of 820-1200 K. At intermediate temperatures, the resonantly stabilised 5-methyl-2-furanylmethyl radical is found to predominantly undergo bimolecular reactions, and as a result sub-mechanisms for 5-methyl-2-formylfuran and 5-methyl-2-ethylfuran, and their derivatives, have also been developed with consumption pathways proposed. This study is the first to attempt to simulate the combustion of these species in any detail, although future refinements are likely necessary. The current study illustrates both quantitatively and qualitatively the complex chemical behavior of what is a high potential biofuel. Whilst the current work is the most comprehensive study on the oxidation of 25DMF in the literature to date, the mechanism cannot accurately reproduce laminar burning velocity measurements over a suitable range of unburnt gas temperatures, pressures and equivalence ratios, although discrepancies in the experimental literature data are highlighted. Resolving this issue should remain a focus of future work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...