Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Cancer Res ; 158: 163-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990532

RESUMO

The back-breaking resistance mechanisms generated by lung cancer cells against epidermal growth factor receptor (EGFR), KRAS and Janus kinase 2 (JAK2) directed therapies strongly prioritizes the requirement of novel therapies which are perfectly tolerated, potentially cytotoxic and can reinstate the drug-sensitivity in lung cancer cells. Enzymatic proteins modifying the post-translational modifications of nucleosome-integrated histone substrates are appearing as current targets for defeating various malignancies. Histone deacetylases (HDACs) are hyperexpressed in diverse lung cancer types. Blocking the active pocket of these acetylation erasers through HDAC inhibitors (HDACi) has come out as an optimistic therapeutic recourse for annihilating lung cancer. This article in the beginning gives an overview about lung cancer statistics and predominant lung cancer types. Succeeding this, compendium about conventional therapies and their serious drawbacks has been provided. Then, connection of uncommon expression of classical HDACs in lung cancer onset and expansion has been detailed. Moreover, keeping the main theme in view this article deeply discusses HDACi in the context of aggressive lung cancer as single agents and spotlights various molecular targets suppressed or induced by these inhibitors for engendering cytotoxic effect. Most particularly, the raised pharmacological effects achieved on using these inhibitors in concerted form with other therapeutic molecules and the cancer-linked pathways altered by this procedure are described. The positive direction towards further heightening of efficacy and the pressing requirement of exhaustive clinical assessment has been proposed as a new focus point.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Histonas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Histona Desacetilases/química
2.
Chem Biol Drug Des ; 98(3): 363-376, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33966346

RESUMO

Histone deacetylase 2 (HDAC2), an isozyme of Class I HDACs has potent imputations in actuating neurodegenerative signaling. Currently, there are sizeable therapeutic disquiets with the use of synthetic histone deacetylase inhibitors in disease management. This strongly suggests the unfulfilled medical necessity of plant substitutes for therapeutic intervention. Sulforaphane-N-acetyl-cysteine (SFN-N-acetylcysteine or SFN-NAC), a sulforaphane metabolite has shown significantly worthier activity against HDACs under in vitro conditions. However, the atomistic studies of SFN-NAC against HDAC2 are currently lacking. Thus, the present study employed a hybrid strategy including extra-precision (XP) grid-based flexible molecular docking, molecular mechanics generalized born surface area (MM-GBSA), e-Pharmacophores method, and molecular dynamics simulation for exploring the binding strengh, mode of interaction, e-Pharmacophoric features, and stability of SFN-NAC towards HDAC2. Further, the globally acknowledged density functional theory (DFT) study was performed on SFN-NAC and entinostat individually in complex state with HDAC2. Apart from this, these inhibitors were tested against three distinct cancer cell models and one transformed cell line for cytotoxic activity. Moreover, double mutant of HDAC2 was generated and the binding orientation and interaction of SFN-NAC was scrutinized in this state. On the whole, this study unbosomed and explained the comparatively higher binding affinity of entinostat for HDAC2 and its wide spectrum cytotoxicity than SFN-NAC.


Assuntos
Acetilcisteína/química , Antineoplásicos/química , Histona Desacetilase 2/antagonistas & inibidores , Isotiocianatos/química , Sulfóxidos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Estabilidade de Medicamentos , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Mutagênese , Piridinas/farmacologia , Termodinâmica
3.
Phytother Res ; 35(7): 3509-3532, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33580629

RESUMO

Various signaling mechanisms contribute significantly to the development of multiple cancers. Small molecules with the potential of influencing a wide variety of molecular targets may prove as broad-spectrum anticancer agents. Flavonoids from plant sources are strongly emerging as promising antineoplastic molecules because of their ability to hamper different cancer-driving signaling pathways. Further, these flavonoids offer an additional benefit due to their congenital antioxidant potential. This paper discusses the anticancer activity of luteolin against a number of cancers including leukemias, prostate cancer, pancreatic cancer, breast cancer, lung cancer, colorectal cancer, melanoma, liver, gastric, and brain cancer. Strong emphasis has been laid on key molecular mechanisms impacted by luteolin for exerting antineoplastic effect. Importantly, certain epigenetic targets like histone deacetylases (HDACs), DNA methylation regulator enzymes that are influenced by this befitting flavone for inducing cytotoxicity in certain preclinical cancer models, have also been made the part of this review. Additionally, the significantly improved therapeutic benefits of luteolin in combination with other therapeutics are comprehensively discussed. The current loopholes in luteolin research are also considered, which may open novel routes for further valuable studies on this promising flavone.


Assuntos
Antineoplásicos Fitogênicos , Luteolina , Neoplasias , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Humanos , Luteolina/farmacologia , Luteolina/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA