Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140866, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056719

RESUMO

This study is dedicated to the enhancement of electrospun polyacrylonitrile (PAN) nanofiber membranes for their application in membrane bioreactor (MBR) processes. The improvement is achieved through the incorporation of graphitic carbon nitride nanotubes/carbon dots (g-C3N4 NT/CDs) and subsequent heat post-treatments at varying temperatures. Notably, the hot-pressing methodology effectively mitigates surface roughness and significantly reduces issues related to peeling during nanofiber experimentation. Our results demonstrate that the introduction of 0.5 wt% of g-C3N4 NT/CDs leads to a substantial enhancement in water flux. In particular, nanocomposite membranes subjected to hot-pressing at 90 °C for 10 min exhibited an impressive flux recovery ratio (FRR) of 70%. Furthermore, the heat-treated nanocomposite membranes exhibited remarkable antifouling properties and significantly reduced fouling rates when compared to their heat-treated bare counterparts. This study underscores the noteworthy potential of g-C3N4 NT/CDs-modified PAN nanofiber membranes to substantially elevate MBR performance, firmly positioning them as highly promising candidates for critical applications in the domains of water and wastewater treatment. However, it is imperative to underscore that the existing written material necessitates a comprehensive overhaul to align with the provided structural framework.


Assuntos
Nanofibras , Nanotubos , Carbono , Nanofibras/química , Água
2.
Carbohydr Polym ; 321: 121296, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739529

RESUMO

Due to low-cost, sustainability and good mechanical stability, cellulose-based materials are frequently used in fabrication of polymeric gas separation membrane as potential carbohydrate polymers to substitute traditional petrochemical-based materials. In this review, the performance of cellulose-based polymeric membranes i.e. cellulose acetate, cellulose diacetate, cellulose triacetate, ethyl cellulose and carboxymethyl cellulose in the separation of different gases were investigated. This review paper provides the main features and advantages in the fabrication of cellulose-based gas separation membranes. The influence of the functionalization of cellulose on gas separation and permeability performance of related membranes is considered. Influence of different modification procedures such as blending with polymers, nanomaterials and ionic liquids on the gas separation ability of cellulose-based membranes were reviewed. Moreover, a brief inquiry of the potential of cellulose-based gas separation membranes for industrial applications, by examining the performance of different cellulose derivatives and identifying potential strategies for membrane modification and optimization are given, along with the current restrictions and the future perspectives are discussed.

3.
Environ Sci Pollut Res Int ; 30(40): 91874-91886, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37480541

RESUMO

Bulking and foaming are extreme filamentous bacterial growths that present serious challenges for the biological leachate treatment process. The current study evaluates the performance of long-term full-scale membrane bioreactor (MBR) treating landfill leachate, specifically focusing on filamentous bacteria overgrowth in the bioreactors. The influence of the variation in leachate structure and operational conditions on floc morphology and filamentous bacteria overgrowth were analyzed for 11 months of operation of the full-scale MBR system. The average chemical oxygen demand (COD) and NH4-N removal efficiencies of the system were 87.8 ± 4% and 99.5 ± 0.7%. However, incomplete denitrification was observed when the F/M ratio was low. The high C/N ratio was observed to enhance the frequency of small flocs. Furthermore, a poor to medium diversity of the microbial community was observed. Haliscomenobacter hydrossis, Microthrix parvicella, and Type 021N were found as the most numerous filamentous organisms. Paramecium spp., Euplotes spp., and Aspidisca spp. were found in small quantities. The limited concentration of PO4-P in the leachate compared to high COD and NH4-N concentrations most probably caused phosphate deprivation and increased abundance of identified filamentous microorganisms. This work is the first study in Türkiye that investigates the bulking and foaming problem in full-scale MBR that treats landfill leachate. Hence, it may provide some pioneering perspectives into landfill leachate remediation by monitoring the hybrid biological system.


Assuntos
Actinobacteria , Microbiota , Poluentes Químicos da Água , Bactérias , Reatores Biológicos
4.
World J Microbiol Biotechnol ; 39(8): 198, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37188850

RESUMO

Nitrogen stress can influence microalgae's growth characteristics, and microalgae grown in nitrogen-deficient conditions may produce higher or lower levels of biotechnological products as a result of metabolic changes. In photoautotrophic and heterotrophic cultures, nitrogen limitation has been proven effective in promoting lipid accumulation. In spite of this, no study has demonstrated a significant correlation between lipid content and other biotechnological products such as bioactive compounds (BACs). This research examines a strategy for lipid accumulation as well as the potential production of BACs with antibacterial properties in parallel with that strategy. This concept involved the treatment of the microalga Auxenochlorella protothecoides with low and high concentrations of ammonium (NH4+). This particular experiment reached a maximum lipid content of 59.5% using a 0.8 mM NH4+ concentration, resulting in the yellowing of the chlorophyll levels. Agar diffusion assays were conducted to determine the antibacterial activity of different extracts derived from the biomass when stressed with different levels of nitrogen. Algal extracts prepared by a variety of solvents showed different levels of antibacterial activity against representative strains of both gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus) bacteria. Among the extracts tested, 500 mg/L ethyl acetate extract had the greatest antibacterial activity against Escherichia coli. In order to identify the components responsible for the extract's antibacterial activity, fatty acid methyl ester (FAME) analysis was performed. It has been suggested that the lipid fraction may be a valuable indicator of these activities since some lipid components are known to possess antimicrobial properties. In this regard, it was found that the amount of polyunsaturated fatty acid (PUFA) significantly decreased by 53.4% under the conditions with the highest antibacterial activity observed.


Assuntos
Clorófitas , Microalgas , Nitrogênio/metabolismo , Clorófitas/metabolismo , Ácidos Graxos/análise , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/metabolismo , Microalgas/metabolismo , Biomassa
5.
J Water Process Eng ; 49: 103036, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35966450

RESUMO

In the last years, antiviral drugs especially used for the treatment of COVID-19 have been considered emerging contaminants because of their continuous occurrence and persistence in water/wastewater even at low concentrations. Furthermore, as compared to antiviral drugs, their metabolites and transformation products of these pharmaceuticals are more persistent in the environment. They have been found in environmental matrices all over the world, demonstrating that conventional treatment technologies are unsuccessful for removing them from water/wastewater. Several approaches for degrading/removing antiviral drugs have been studied to avoid this contamination. In this study, the present level of knowledge on the input sources, occurrence, determination methods and, especially, the degradation and removal methods of antiviral drugs are discussed in water/wastewater. Different removal methods, such as conventional treatment methods (i.e. activated sludge), advanced oxidation processes (AOPs), adsorption, membrane processes, and combined processes, were evaluated. In addition, the antiviral drugs and these metabolites, as well as the transformation products created as a result of treatment, were examined. Future perspectives for removing antiviral drugs, their metabolites, and transformation products were also considered.

6.
Carbohydr Polym ; 281: 119041, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074105

RESUMO

Sustainability concerns have motivated and directed a great deal of interest over the past decade towards the development of green technologies. Polysaccharides are green polymers, which experienced growing demand to substitute chemically synthetic polymers. Different types of polysaccharides i.e. cellulose-, starch-, chitin- alginate-, and chitosan-based carbohydrate polymers have been applied in the fabrication of separation membranes. The purpose of the current review was to summarize, classify, and discuss the state-of-the-art the fabrication of membranes with carbohydrate polymers. Specific attention was paid to highlight the strategies used in the successful development of such membranes. First, a brief review of different types of polysaccharides was performed. Next, the application of these polysaccharides in the fabrication of liquid filtration, gas separation, adsorption, pervaporation and proton exchange membranes were comprehensively reviewed. Computational evaluations were also reviewed. Eventually, concluding remarks together with challenging aspects of the future perspective over application of polysaccharide membranes were discussed.


Assuntos
Quitosana , Polissacarídeos , Alginatos , Celulose , Quitina
7.
Water Sci Technol ; 77(3-4): 971-978, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29488960

RESUMO

The effects of a newly isolated quorum quenching (QQ) bacteria (Bacillus sp. T5) on the microbial community has been evaluated via the Illumina sequencing method. Membrane bioreactors (MBRs) operated with this novel QQ bacterium to evaluate the improvement in the performance of MBR. Anti-biofouling effect of T5 was enhanced as 71% compared to the control reactor. Also, QQ bacteria did not have any negative effect on the removal of organics during the process. Gram-negative bacteria were found to be dominant over Gram-positive bacteria. Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, Firmicutes, and Chloroflexi were dominant phyla in the control and QQ reactors. The proportion of Alphaproteobacteria was most significant among Proteobacteria. The relative abundances of Actinobacteria, Acidobacteria, and Firmicutes were significantly affected by Quorum quenching mechanism. On the other hand, QQ activity of Bacillus sp. T5 significantly influenced the relative abundance of Proteobacteria, Bacteroidetes, and Chloroflexi. The QQ process appeared to generate variations in the structure of the microbial community. According to the results of the molecular analyses, the syntrophic interaction of Bacillus sp. T5 and indigenous Gram-negative and Gram-positive bacterial community is critical to the performance of MBRs.


Assuntos
Incrustação Biológica/prevenção & controle , Reatores Biológicos/microbiologia , Percepção de Quorum , Bactérias/classificação , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...