Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(6): 2767-2775, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38558917

RESUMO

Colloidal nuclear magnetic resonance (cNMR) spectroscopy on inorganic cesium lead halide nanocrystals (CsPbX3 NCs) is found to serve for noninvasive characterization and quantification of disorder within these structurally soft and labile particles. In particular, we show that 133Cs cNMR is highly responsive to size variations from 3 to 11 nm or to altering the capping ligands on the surfaces of CsPbX3 NCs. Distinct 133Cs signals are attributed to the surface and core NC regions. Increased heterogeneous broadening of 133Cs signals, observed for smaller NCs as well as for long-chain zwitterionic capping ligands (phosphocholines, phosphoethanol(propanol)amine, and sulfobetaines), can be attributed to more significant surface disorder and multifaceted surfaces (truncated cubes). On the contrary, capping with dimethyldidodecylammonium bromide (DDAB) successfully reduces signal broadening owing to better surface passivation and sharper (001)-bound cuboid shape. DFT calculations on various sizes of NCs corroborate the notion that the surface disorder propagates over several octahedral layers. 133Cs NMR is a sensitive probe for studying halide gradients in mixed Br/Cl NCs, indicating bromide-rich surfaces and chloride-rich cores. On the contrary, mixed Br/I NCs exhibit homogeneous halide distributions.

2.
Nat Phys ; 20(1): 47-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261834

RESUMO

Understanding the origin of electron-phonon coupling in lead halide perovskites is key to interpreting and leveraging their optical and electronic properties. Here we show that photoexcitation drives a reduction of the lead-halide-lead bond angles, a result of deformation potential coupling to low-energy optical phonons. We accomplish this by performing femtosecond-resolved, optical-pump-electron-diffraction-probe measurements to quantify the lattice reorganization occurring as a result of photoexcitation in nanocrystals of FAPbBr3. Our results indicate a stronger coupling in FAPbBr3 than CsPbBr3. We attribute the enhanced coupling in FAPbBr3 to its disordered crystal structure, which persists down to cryogenic temperatures. We find the reorganizations induced by each exciton in a multi-excitonic state constructively interfere, giving rise to a coupling strength that scales quadratically with the exciton number. This superlinear scaling induces phonon-mediated attractive interactions between excitations in lead halide perovskites.

3.
Adv Mater ; 34(44): e2202709, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36062547

RESUMO

Interplay between structural and photophysical properties of metal halide perovskites is critical to their utility in optoelectronics, but there is limited understanding of lattice response upon photoexcitation. Here, 2D perovskites butylammonium lead iodide, (BA)2 PbI4 , and phenethylammonium lead iodide, (PEA)2 PbI4 , are investigated using ultrafast transient X-ray diffraction as a function of optical excitation fluence to discern structural dynamics. Both powder X-ray diffraction and time-resolved photoluminescence linewidths narrow over 1 ns following optical excitation for the fluence range studied, concurrent with slight redshifting of the optical bandgaps. These observations are attributed to transient relaxation and ordering of distorted lead iodide octahedra stimulated mainly by electron-hole pair creation. The c axis expands up to 0.37% over hundreds of picoseconds; reflections sampling the a and b axes undergo one tenth of this expansion with the same timescale. Post-photoexcitation appearance of the (110) reflection in (BA)2 PbI4 would suggest a transient phase transition, however, through new single-crystal XRD, reflections are found that violate glide plane conditions in the reported Pbca structure. The static structure space group is reassigned as P21 21 21 . With this, a nonequilibrium phase transition is ruled out. These findings offer increased understanding of remarkable lattice response in 2D perovskites upon excitation.

4.
Nat Commun ; 13(1): 2587, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546149

RESUMO

Semiconductor quantum dots have long been considered artificial atoms, but despite the overarching analogies in the strong energy-level quantization and the single-photon emission capability, their emission spectrum is far broader than typical atomic emission lines. Here, by using ab-initio molecular dynamics for simulating exciton-surface-phonon interactions in structurally dynamic CsPbBr3 quantum dots, followed by single quantum dot optical spectroscopy, we demonstrate that emission line-broadening in these quantum dots is primarily governed by the coupling of excitons to low-energy surface phonons. Mild adjustments of the surface chemical composition allow for attaining much smaller emission linewidths of 35-65 meV (vs. initial values of 70-120 meV), which are on par with the best values known for structurally rigid, colloidal II-VI quantum dots (20-60 meV). Ultra-narrow emission at room-temperature is desired for conventional light-emitting devices and paramount for emerging quantum light sources.

5.
Nat Commun ; 12(1): 1860, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767138

RESUMO

Nonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in such materials are not understood. Here, femtosecond electron diffraction measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in colloidal semiconductor nanocrystals. Investigation of the excitation energy dependence in a core/shell system shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap of the core in the same system result in transient lattice heating that occurs on a much longer 200 picosecond timescale, dominated by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices.

6.
J Phys Chem Lett ; 11(21): 9255-9264, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32931296

RESUMO

Semiconductors assembled from colloidal nanocrystals (NCs) are often described in the same terms as their single-crystalline counterparts with references to conduction and valence band edges, doping densities, and electronic defects; however, how and why semiconductor properties manifest in these bottom-up fabricated thin films can be fundamentally different. In this Perspective, we describe the factors that determine the electronic structure in colloidal NC-based semiconductors, and comment on approaches for measuring or calculating this electronic structure. Finally, we discuss future directions for these semiconductors and highlight their potential to bridge the divide between localized quantum effects and long-range transport in thin films.

7.
ACS Cent Sci ; 6(7): 1138-1149, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32724848

RESUMO

Lead-halide perovskites increasingly mesmerize researchers because they exhibit a high degree of structural defects and dynamics yet nonetheless offer an outstanding (opto)electronic performance on par with the best examples of structurally stable and defect-free semiconductors. This highly unusual feature necessitates the adoption of an experimental and theoretical mindset and the reexamination of techniques that may be uniquely suited to understand these materials. Surprisingly, the suite of methods for the structural characterization of these materials does not commonly include nuclear magnetic resonance (NMR) spectroscopy. The present study showcases both the utility and versatility of halide NMR and NQR (nuclear quadrupole resonance) for probing the structure and structural dynamics of CsPbX3 (X = Cl, Br, I), in both bulk and nanocrystalline forms. The strong quadrupole couplings, which originate from the interaction between the large quadrupole moments of, e.g., the 35Cl, 79Br, and 127I nuclei, and the local electric-field gradients, are highly sensitive to subtle structural variations, both static and dynamic. The quadrupole interaction can resolve structural changes with accuracies commensurate with synchrotron X-ray diffraction and scattering. It is shown that space-averaged site-disorder is greatly enhanced in the nanocrystals compared to the bulk, while the dynamics of nuclear spin relaxation indicates enhanced structural dynamics in the nanocrystals. The findings from NMR and NQR were corroborated by ab initio molecular dynamics, which point to the role of the surface in causing the radial strain distribution and disorder. These findings showcase a great synergy between solid-state NMR or NQR and molecular dynamics simulations in shedding light on the structure of soft lead-halide semiconductors.

8.
Nat Commun ; 11(1): 2852, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503965

RESUMO

The potential of semiconductors assembled from nanocrystals has been demonstrated for a broad array of electronic and optoelectronic devices, including transistors, light emitting diodes, solar cells, photodetectors, thermoelectrics, and phase change memory cells. Despite the commercial success of nanocrystal quantum dots as optical absorbers and emitters, applications involving charge transport through nanocrystal semiconductors have eluded exploitation due to the inability to predictively control their electronic properties. Here, we perform large-scale, ab initio simulations to understand carrier transport, generation, and trapping in strongly confined nanocrystal quantum dot-based semiconductors from first principles. We use these findings to build a predictive model for charge transport in these materials, which we validate experimentally. Our insights provide a path for systematic engineering of these semiconductors, which in fact offer previously unexplored opportunities for tunability not achievable in other semiconductor systems.

9.
ACS Nano ; 14(4): 4792-4804, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32208676

RESUMO

Metal nanocrystals exhibit important optoelectronic and photocatalytic functionalities in response to light. These dynamic energy conversion processes have been commonly studied by transient optical probes to date, but an understanding of the atomistic response following photoexcitation has remained elusive. Here, we use femtosecond resolution electron diffraction to investigate transient lattice responses in optically excited colloidal gold nanocrystals, revealing the effects of nanocrystal size and surface ligands on the electron-phonon coupling and thermal relaxation dynamics. First, we uncover a strong size effect on the electron-phonon coupling, which arises from reduced dielectric screening at the nanocrystal surfaces and prevails independent of the optical excitation mechanism (i.e., inter- and intraband). Second, we find that surface ligands act as a tuning parameter for hot carrier cooling. Particularly, gold nanocrystals with thiol-based ligands show significantly slower carrier cooling as compared to amine-based ligands under intraband optical excitation due to electronic coupling at the nanocrystal/ligand interfaces. Finally, we spatiotemporally resolve thermal transport and heat dissipation in photoexcited nanocrystal films by combining electron diffraction with stroboscopic elastic scattering microscopy. Taken together, we resolve the distinct thermal relaxation time scales ranging from 1 ps to 100 ns associated with the multiple interfaces through which heat flows at the nanoscale. Our findings provide insights into optimization of gold nanocrystals and their thin films for photocatalysis and thermoelectric applications.

10.
ACS Appl Mater Interfaces ; 12(14): 16243-16249, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163263

RESUMO

Detailed understanding of charge diffusion processes in a lithium-ion battery is crucial to enable its systematic improvement. Experimental investigation of diffusion at the interface between active particles and the electrolyte is challenging but warrants investigation as it can introduce resistances that, for example, limit the charge and discharge rates. Here, we show an approach to study diffusion at interfaces using muon spin spectroscopy. By performing measurements on LiFePO4 platelets with different sizes, we determine how diffusion through the LiFePO4 (010) interface differs from that in the center of the particle (i.e., bulk diffusion). We perform ab initio calculations to aid the understanding of the results and show the relevance of our interfacial diffusion measurement to electrochemical performance through cyclic voltammetry measurements. These results indicate that surface engineering can be used to improve the performance of lithium-ion batteries.

11.
Nano Lett ; 20(3): 1819-1829, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049539

RESUMO

We combine state-of-the-art ultrafast photoluminescence and absorption spectroscopy and nonadiabatic molecular dynamics simulations to investigate charge-carrier cooling in CsPbBr3 nanocrystals over a very broad size regime, from 0.8 to 12 nm. Contrary to the prevailing notion that polaron formation slows down charge-carrier cooling in lead-halide perovskites, no suppression of carrier cooling is observed in CsPbBr3 nanocrystals except for a slow cooling (over ∼10 ps) of "warm" electrons in the vicinity (within ∼0.1 eV) of the conduction band edge. At higher excess energies, electrons and holes cool with similar rates, on the order of 1 eV ps-1 carrier-1, increasing weakly with size. Our ab initio simulations suggest that cooling proceeds via fast phonon-mediated intraband transitions driven by strong and size-dependent electron-phonon coupling. The presented experimental and computational methods yield the spectrum of involved phonons and may guide the development of devices utilizing hot charge carriers.

12.
Nat Commun ; 10(1): 4236, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530815

RESUMO

Phonon engineering of solids enables the creation of materials with tailored heat-transfer properties, controlled elastic and acoustic vibration propagation, and custom phonon-electron and phonon-photon interactions. These can be leveraged for energy transport, harvesting, or isolation applications and in the creation of novel phonon-based devices, including photoacoustic systems and phonon-communication networks. Here we introduce nanocrystal superlattices as a platform for phonon engineering. Using a combination of inelastic neutron scattering and modeling, we characterize superlattice-phonons in assemblies of colloidal nanocrystals and demonstrate that they can be systematically engineered by tailoring the constituent nanocrystals, their surfaces, and the topology of superlattice. This highlights that phonon engineering can be effectively carried out within nanocrystal-based devices to enhance functionality, and that solution processed nanocrystal assemblies hold promise not only as engineered electronic and optical materials, but also as functional metamaterials with phonon energy and length scales that are unreachable by traditional architectures.

13.
J Chem Phys ; 151(24): 241104, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893923

RESUMO

Nanocrystal-based solar cells are promising candidates for next generation photovoltaic applications; however, the most recent improvements to the device chemistry and architecture have been mostly trial-and-error based advancements. Due to complex interdependencies among parameters, determining factors that limit overall solar cell efficiency are not trivial. Furthermore, many of the underlying chemical and physical parameters of nanocrystal-based solar cells have only recently been understood and quantified. Here, we show that this new understanding of interfaces, transport, and origin of trap states in nanocrystal-based semiconductors can be integrated into simulation tools, based on 1D drift-diffusion models. Using input parameters measured in independent experiments, we find excellent agreement between experimentally measured and simulated PbS nanocrystal solar cell behavior without having to fit any parameters. We then use this simulation to understand the impact of interfaces, charge carrier mobility, and trap-assisted recombination on nanocrystal performance. We find that careful engineering of the interface between the nanocrystals and the current collector is crucial for an optimal open-circuit voltage. We also show that in the regime of trap-state densities found in PbS nanocrystal solar cells (∼1017 cm-3), device performance exhibits strong dependence on the trap state density, explaining the sensitivity of power conversion efficiency to small changes in nanocrystal synthesis and nanocrystal thin-film deposition that has been reported in the literature. Based on these findings, we propose a systematic approach to nanocrystal solar cell optimization. Our method for incorporating parameters into simulations presented and validated here can be adopted to speed up the understanding and development of all types of nanocrystal-based solar cells.

14.
J Phys Chem Lett ; 9(24): 7165-7172, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30525647

RESUMO

In engineering a high-performance semiconductor device, understanding of the Fermi level position is critical. Here, we demonstrate that open-circuit potential (OCP) measurements can be used to quantify the Fermi level in nanocrystal thin films in situ during their solution-based fabrication. We use this method to study the influence of (1) a metal contact and (2) nanocrystal surface termination on the Fermi level of the nanocrystal film, and find that oxidization or reduction of the nanocrystals as well as surface terminations with dipoles can be used to tune the Fermi level over large energy ranges. Finally, to emphasize the compatibility of the technique with device fabrication, we show that we can use blends of ligands to design the Fermi level landscape in a nanocrystal film. Our work highlights that OCP measurements can be used to gain insight into existing device operation and direct further optimization of optoelectronic devices.

15.
Nano Lett ; 18(4): 2233-2242, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29498867

RESUMO

We perform ab initio molecular dynamics on experimentally relevant-sized lead sulfide (PbS) nanocrystals (NCs) constructed with thiol or Cl, Br, and I anion surfaces to determine their vibrational and dynamic electronic structure. We show that electron-phonon interactions can explain the large thermal broadening and fast carrier cooling rates experimentally observed in Pb-chalcogenide NCs. Furthermore, our simulations reveal that electron-phonon interactions are suppressed in halide-terminated NCs due to reduction of both the thermal displacement of surface atoms and the spatial overlap of the charge carriers with these large atomic vibrations. This work shows how surface engineering, guided by simulations, can be used to systematically control carrier dynamics.

16.
J Phys Chem Lett ; 9(7): 1561-1567, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518338

RESUMO

Knowledge of the vibrational structure of a semiconductor is essential for explaining its optical and electronic properties and enabling optimized materials selection for optoelectronic devices. However, measurement of the vibrational density of states of nanomaterials is challenging. Here, using the example of colloidal nanocrystals (quantum dots), we show that the vibrational density of states of nanomaterials can be accurately and efficiently measured with inelastic X-ray scattering (IXS). Using IXS, we report the first experimental measurements of the vibrational density of states for lead sulfide nanocrystals with different halide-ion terminations and for CsPbBr3 perovskite nanocrystals. IXS findings are supported with ab initio molecular dynamics simulations, which provide insight into the origin of the measured vibrational structure and the effect of nanocrystal surface. Our findings highlight the advantages of IXS compared to other methods for measuring the vibrational density of states of nanocrystals such as inelastic neutron scattering and Raman scattering.

17.
J Phys Chem Lett ; 9(6): 1384-1392, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29485880

RESUMO

Use of nanocrystal thin films as active layers in optoelectronic devices requires tailoring of their electronic band structure. Here, we demonstrate energy-resolved electrochemical impedance spectroscopy (ER-EIS) as a method to quantify the electronic structure in nanocrystal thin films. This technique is particularly well-suited for nanocrystal-based thin films as it allows for in situ assessment of electronic structure during solution-based deposition of the thin film. Using well-studied lead sulfide nanocrystals as an example, we show that ER-EIS can be used to probe the energy position and number density of defect or dopant states as well as the modification of energy levels in nanocrystal solids that results through the exchange of surface ligands. This work highlights that ER-EIS is a sensitive and fast method to measure the electronic structure of nanocrystal thin films and enables their optimization in optoelectronic devices.

18.
Nature ; 531(7596): 618-22, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26958836

RESUMO

Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron-phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10-13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron-phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron-phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of phonon processes permits the rational selection of nanomaterials, their surface treatments, and the design of devices incorporating them.

19.
Nat Commun ; 6: 6180, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25625647

RESUMO

Improving devices incorporating solution-processed nanocrystal-based semiconductors requires a better understanding of charge transport in these complex, inorganic-organic materials. Here we perform a systematic study on PbS nanocrystal-based diodes using temperature-dependent current-voltage characterization and thermal admittance spectroscopy to develop a model for charge transport that is applicable to different nanocrystal-solids and device architectures. Our analysis confirms that charge transport occurs in states that derive from the quantum-confined electronic levels of the individual nanocrystals and is governed by diffusion-controlled trap-assisted recombination. The current is limited not by the Schottky effect, but by Fermi-level pinning because of trap states that is independent of the electrode-nanocrystal interface. Our model successfully explains the non-trivial trends in charge transport as a function of nanocrystal size and the origins of the trade-offs facing the optimization of nanocrystal-based solar cells. We use the insights from our charge transport model to formulate design guidelines for engineering higher-performance nanocrystal-based devices.

20.
Beilstein J Nanotechnol ; 5: 234-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778944

RESUMO

Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...