Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732646

RESUMO

After a careful and comprehensive review of our data and the figures in our manuscript, we have identified an area where we believe a correction is warranted in order to enhance the clarity and precision of our findings [...].

3.
Foods ; 12(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835227

RESUMO

Maternal obesity, characterized by an elevated body mass index (BMI) during pregnancy, is known to have adverse effects on the offspring. However, a recent study suggests that Elateriospermum tapos (E. tapos) yogurt may hold potential in mitigating excessive weight retention post-pregnancy. Thus, this study aims to employ network pharmacology to explore the pharmacological effects of the bioactive compounds present in E. tapos yogurt against maternal obesity. Initially, a screening process is conducted to identify the bioactive compounds in E. tapos yogurt, followed by the prediction of potential gene targets for these compounds using Swiss Target Prediction and the SuperPred databases. Maternal obesity-associated genes are sourced from the OMIM, DisGeNet, and GeneCards databases. The interaction between the identified compounds and maternal obesity genes is established via protein-protein interaction analysis, gene ontology examination, and KEGG pathway analysis. To validate the results, molecular docking studies are conducted using AutoDock Tools software. The findings reveal that out of the 64 compounds analyzed, three meet the screening criteria, resulting in a total of 380 potential gene targets. Among these targets, 240 are shared with maternal obesity-related genes. Further analysis demonstrates the favorable affinity of these active compounds with key targets, linking them to biological processes involving protein phosphorylation, inflammation, as well as the pathways related to lipid metabolism, atherosclerosis, and the other signaling pathways. In conclusion, this study provides valuable insights into the potential pharmacological effects of the bioactive compounds found in E. tapos yogurt against maternal obesity. These findings open avenues for further exploration and potential therapeutic interventions targeting maternal obesity.

4.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685856

RESUMO

Muscular dystrophy is a heterogenous group of hereditary muscle disorders caused by mutations in the genes responsible for muscle development, and is generally defined by a disastrous progression of muscle wasting and massive loss in muscle regeneration. Pax7 is closely associated with myogenesis, which is governed by various signaling pathways throughout a lifetime and is frequently used as an indicator in muscle research. In this review, an extensive literature search adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was performed to identify research that examined signaling pathways in living models, while quantifying Pax7 expression in myogenesis. A total of 247 articles were retrieved from the Web of Science (WoS), PubMed and Scopus databases and were thoroughly examined and evaluated, resulting in 19 articles which met the inclusion criteria. Admittedly, we were only able to discuss the quantification of Pax7 carried out in research affecting various type of genes and signaling pathways, rather than the expression of Pax7 itself, due to the massive differences in approach, factor molecules and signaling pathways analyzed across the research. However, we highlighted the thorough evidence for the alteration of the muscle stem cell precursor Pax7 in multiple signaling pathways described in different living models, with an emphasis on the novel approach that could be taken in manipulating Pax7 expression itself in dystrophic muscle, towards the discovery of an effective treatment for muscular dystrophy. Therefore, we believe that this could be applied to the potential gap in muscle research that could be filled by tuning the well-established marker expression to improve dystrophic muscle.


Assuntos
Distrofias Musculares , Humanos , Distrofias Musculares/genética , Músculos , Bases de Dados Factuais , Desenvolvimento Muscular , Transdução de Sinais , Fator de Transcrição PAX7/genética
5.
Artif Cells Nanomed Biotechnol ; 51(1): 408-416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37584645

RESUMO

Endothelial dysfunction initiates the pathogenesis of a myriad of cardiovascular diseases, yet the precise underlying mechanisms remain unclear. Current model utilises mechanical denudation of arteries resulting in an arterial-injury model with onset of intimal hyperplasia (IH). Our study shows that 5 min enzymatic denudation of human umbilical artery (hUA) lumen at 37 °C efficiently denudes hUA while maintaining vessel integrity without significantly increase intima-media thickness after 7 days in culture. This ex-vivo model will be a valuable tool in understanding the mechanism of re-endothelialization prior to smooth muscle cells (SMC) activation thus placating IH at an early stage.


Assuntos
Espessura Intima-Media Carotídea , Endotélio Vascular , Humanos , Endotélio Vascular/patologia , Hiperplasia/patologia
6.
Front Endocrinol (Lausanne) ; 14: 1131830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415666

RESUMO

Maternal obesity is the key predictor for childhood obesity and neurodevelopmental delay in the offspring. Medicinal plants are considered to be the safe and best option, and at the same time, probiotic consumption during pregnancy provides beneficial effects for both the mother and the child. Current research has shown that Elateriospermum tapos (E. tapos) yoghurt is safe to consume and consists of many bioactive compounds that can exert an anti-obesity effect. Thus, this study has been designed to study the role of E. tapos yoghurt in mitigating maternal obesity. In this study, a total of 48 female Sprague Dawley (SD) rats were assigned to six groups, with eight rats per group, and obesity was induced over 16 weeks with a high-fat diet (HFD) pellet. On the 17th week, the rats were allowed to mate and pregnancy was confirmed through vaginal smear. The obese induced group was further divided into negative and positive control groups, followed by E. tapos yoghurt treatment groups with three different concentrations (5, 50, and 500 mg/kg). The changes in body weight, calorie intake, lipid profile, liver profile, renal profile, and histopathological analysis were measured on postnatal day (PND) 21. The results show that the group with the highest concentration of E. tapos yoghurt (HYT500) supplementation shows gradual reduction in body weight and calorie intake on PND 21 and modulates the lipid level, liver, and renal enzymes to a normal level similar to the normal group. In histological analysis, HYT500 reverses the damage caused by HFD in liver and colon, and reverses the adipocytes' hypertrophy in retroperitoneal white adipose tissue and visceral fat. In conclusion, supplementation of E. tapos yoghurt during the gestational period up to weaning is effective in the gradual weight loss of maternal obese dams from the 500-mg/kg-supplemented group in this study.


Assuntos
Obesidade Materna , Obesidade Infantil , Criança , Humanos , Ratos , Gravidez , Feminino , Animais , Ratos Sprague-Dawley , Iogurte , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Lipídeos
7.
Antioxidants (Basel) ; 12(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37371870

RESUMO

Respiratory diseases recently became the leading cause of death worldwide, due to the emergence of COVID-19. The pathogenesis of respiratory diseases is centred around inflammation and oxidative stress. Plant-based alongside synthetic drugs were considered as therapeutics due to their proven nutraceutical value. One such example is the olive, which is a traditional symbol of the MedDiet. Olive bioactive compounds are enriched with antioxidant, anti-inflammatory, anticancer and antiviral properties. However, there are few studies relating to the beneficial effect of olive bioactive compounds on respiratory diseases. A vague understanding of its molecular action, dosage and bioavailability limits its usefulness for clinical trials about respiratory infections. Hence, our review aims to explore olive bioactive compound's antioxidant, anti-inflammatory and antiviral properties in respiratory disease defence and treatment. Molecular insight into olive compounds' potential for respiratory system protection against inflammation and ensuing infection is also presented. Olive bioactive compounds mainly protect the respiratory system by subsiding proinflammatory cytokines and oxidative stress.

8.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240142

RESUMO

Infertility is a condition affecting women who are born with an underdeveloped or absent vagina, a birth defect known as congenital absence of the vagina. It is a rare disorder where the development of the Mullerian duct is obstructed by unidentified causes. The case is seldom reported due to the low prevalence and sparse epidemiology studies worldwide. A potential solution for the disorder is neovaginal creation with in vitro cultured vaginal mucosa. Limited studies have reported its application, but none are reproducible or specific regarding the established processes for acquiring vaginal epithelial cells from vaginal biopsies. These research gaps were adequately answered with an epidemiology study of inpatient details in Hospital Canselor Tuanku Muhriz, Malaysia, established methods and outcomes of vaginal tissue processing and isolation, and characterization of vaginal epithelial cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and immunofluorescence assays. The reported evidence and speculation that the disorder arises because of a cellular transition event between epithelial and mesenchymal cells during the development of the Mullerian duct could be key in the creation of neovaginas using established culture procedures to improve surgical results and restore fertility.


Assuntos
Anormalidades Congênitas , Procedimentos de Cirurgia Plástica , Humanos , Feminino , Vagina/anormalidades , Células Epiteliais , Mucosa , Anormalidades Congênitas/patologia
9.
Pharmaceuticals (Basel) ; 16(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37242491

RESUMO

Piper sarmentosum is a well-known traditional herbal plant in various diseases treatments. Multiple scientific studies have also reported various biological activities exhibited by the plant's extract, such as antimicrobial, anticarcinogenic and antihyperglycemic activities, and, in addition, a bone protective effect in ovariectomized rats has been reported. However, no known Piper sarmentosum extract is involved in osteoblast differentiation using stem cells. Our study aims to identify the potential of P. sarmentosum ethanolic extract to induce osteoblast differentiation of human peripheral blood stem cells. Prior to the assay, the proliferation ability of the cells was observed for 14 days and the presence of hematopoietic stem cells in the culture was determined by the expression of SLAMF1 and CD34 genes. During the differentiation assay, the cells were treated with P. sarmentosum ethanolic extract for 14 days. Osteoblast differentiation was examined using an (alkaline phosphatase) ALP assay, by monitoring the expression of osteogenic gene markers and by von Kossa staining. The untreated cells served as the negative control, while cells treated with 50 µg/mL ascorbic acid and 10 mM ß-glycerophosphate acted as the positive control. Finally, the determination of the compound profile was performed using a gas chromatography-mass spectrometry (GC-MS) analysis. The isolated cells were able to proliferate for 14 days during the proliferation assay. The expression of hematopoietic stem cell markers was also upregulated during the 14 days assay. Following the differentiation induction, the ALP activity exhibited a significant increase (p < 0.05) from day 3 of the differentiation assay. A molecular analysis also showed that the osteogenic markers ALP, RUNX2, OPN and OCN were upregulated compared to the positive control. The presence of mineralized cells with a brownish-stained morphology was observed, indicating the mineralization process increased in a time-dependent manner regardless of the concentration used. There were 54 compounds observed in the GC-MS analysis, including ß-asarones, carvacrol and phytol, which have been shown to possess osteoinductive capacities. Our results demonstrate that the ethanolic extract of P. sarmentosum can induce osteoblast differentiation of peripheral blood stem cells. The extract contains potent compounds which can potentially induce the differentiation of bone cells, i.e., osteoblasts.

10.
Antioxidants (Basel) ; 12(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237920

RESUMO

Emerging evidence suggests that cognitive impairments may result from various factors, such as neuroinflammation, oxidative stress, mitochondrial damage, impaired neurogenesis, synaptic plasticity, blood-brain barrier (BBB) disruption, amyloid ß protein (Aß) deposition, and gut dysbiosis. Meanwhile, dietary polyphenol intake in a recommended dosage has been suggested to reverse cognitive dysfunction via various pathways. However, excessive intake of polyphenols could trigger unwanted adverse effects. Thus, this review aims to outline possible causes of cognitive impairments and how polyphenols alleviate memory loss via various pathways based on in vivo experimental studies. Thus, to identify potentially relevant articles, the keywords (1) nutritional polyphenol intervention NOT medicine AND neuron growth OR (2) dietary polyphenol AND neurogenesis AND memory impairment OR (3) polyphenol AND neuron regeneration AND memory deterioration (Boolean operators) were used in the Nature, PubMed, Scopus, and Wiley online libraries. Based on the inclusion and exclusion criteria, 36 research papers were selected to be further reviewed. The outcome of all the studies included supports the statement of appropriate dosage by taking into consideration gender differences, underlying conditions, lifestyle, and causative factors for cognitive decline, which will significantly boost memory power. Therefore, this review recapitulates the possible causes of cognitive decline, the mechanism of polyphenols involving various signaling pathways in modulating the memory, gut dysbiosis, endogenous antioxidants, bioavailability, dosage, and safety efficacy of polyphenols. Hence, this review is expected to provide a basic understanding of therapeutic development for cognitive impairments in the future.

11.
Antioxidants (Basel) ; 12(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237937

RESUMO

Obesity is a chronic low-grade inflammatory condition that induces the generation of oxidative stress and inflammation. This oxidative stress and inflammation stimulate brain atrophy and some morphological changes in the brain that eventually result in cognitive impairments. However, there is no exact study that has summarized the role of oxidative stress and inflammation in obesity and its impact on cognitive impairments. Thus, the objective of this review is to recapitulate the current role of oxidative stress and inflammation in cognitive decline based on in vivo evidence. A comprehensive search was performed in Nature, Medline and Ovid, ScienceDirect, and PubMed, and the search was limited to the past 10 years of publication. From the search, we identified 27 articles to be further reviewed. The outcome of this study indicates that a greater amount of fat stored in individual adipocytes in obesity induces the formation of reactive oxygen species and inflammation. This will lead to the generation of oxidative stress, which may cause morphological changes in the brain, suppress the endogenous antioxidant system, and promote neuroinflammation and, eventually, neuronal apoptosis. This will impair the normal function of the brain and specific regions that are involved in learning, as well as memory. This shows that obesity has a strong positive correlation with cognitive impairments. Hence, this review summarizes the mechanism of oxidative stress and inflammation that induce memory loss based on animal model evidence. In conclusion, this review may serve as an insight into therapeutic development focusing on oxidative stress and inflammatory pathways to manage an obesity-induced cognitive decline in the future.

12.
Front Pharmacol ; 14: 1132087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077809

RESUMO

This study assessed the toxicity of lutein-rich purple sweet potato leaf (PSPL) extract in male Sprague-Dawley rats. Methods and study design: A total of 54 adult male Sprague-Dawley rats were used. For the acute toxicity study, three rats in the acute control group were fed 2,000 mg/kg of PSPL for 14 days. The subacute toxicity study included six rats each in four groups administered 50, 250, 500, or 1,000 mg/kg for 28 days and observed for further 14 days without treatment in the subacute control and subacute satellite groups. Changes in body weight; blood biochemistry; hematological parameters; relative organ weight; and histological sections of the heart, kidney, liver, pancreas, aorta, and retina were observed for signs of toxicity. Results: The gradual increase in weekly body weight, normal level full blood count, normal liver and kidney profile, relative organ weight, and histological sections of all stained organ tissue in the treated group compared with the acute, subacute, and satellite control groups demonstrated the absence of signs of toxicity. Conclusion: Lutein-rich PSPL extract shows no signs of toxicity up to 2,000 mg/kg/day.

13.
Nutrients ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904258

RESUMO

Maternal obesity is a key predictor of childhood obesity and a determining factor for a child's body composition. Thus, any form of maternal nutrition during the gestational period plays a vital role in influencing the growth of the fetus. Elateriospermum tapos (E. tapos) yogurt has been found to comprise many bioactive compounds such as tannins, saponins, α-linolenic acid, and 5'-methoxy-bilobate with apocynoside I that could cross the placenta and exhibit an anti-obesity effect. As such, this study aimed to investigate the role of maternal E. tapos yogurt supplementation on offspring body composition. In this study, 48 female Sprague Dawley (SD) rats were induced with obesity using a high-fat diet (HFD) and were allowed to breed. Upon confirmation of pregnancy, treatment was initiated with E. tapos yogurt on the obese dams up to postnatal day 21. The weaning offspring were then designated into six groups according to their dam's group (n = 8) as follows; normal food and saline (NS), HFD and saline (HS), HFD and yogurt (HY), HFD and 5 mg/kg of E. tapos yogurt (HYT5), HFD and 50 mg/kg of E. tapos yogurt (HYT50), and HFD and 500 mg/kg of E. tapos yogurt (HYT500). The body weight of the offspring was accessed every 3 days up to PND 21. All the offspring were euthanized on PND 21 for tissue harvesting and blood sample collection. The results showed that both male and female offspring of obese dams treated with E. tapos yogurt showed growth patterns similar to NS and reduced levels of triglycerides (TG), cholesterol, LDL, non-HDL, and leptin. Liver enzymes such as ALT, ALP, AST, GGT, and globulin, and renal markers such as sodium, potassium, chloride, urea, and creatinine levels significantly reduced (p < 0.05) in the offspring of E. tapos yogurt-treated obese dams with the normal histological architecture of the liver, kidney, colon, RpWAT, and visceral tissue that is comparable to NS. In toto, E. tapos yogurt supplementation of obese dams exerted an anti-obesity effect by preventing intergenerational obesity by reversing HFD-induced damage in the fat tissue of the offspring.


Assuntos
Fenômenos Fisiológicos da Nutrição Materna , Obesidade Infantil , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Gravidez , Ratos , Composição Corporal , Dieta Hiperlipídica , Suplementos Nutricionais , Ratos Sprague-Dawley , Iogurte
14.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838850

RESUMO

Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.


Assuntos
Olea , Álcool Feniletílico , Azeite de Oliva/farmacologia , Células Endoteliais , Antioxidantes/farmacologia , Álcool Feniletílico/farmacologia
15.
Toxins (Basel) ; 15(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36828439

RESUMO

The Bouea macrophylla fruit is native to Malaysia and is known for its many beneficial effects on one's health. Probiotics are well-known for their roles as anti-inflammatory, antioxidant, and anti-tumour properties due to their widespread use. As a result, the purpose of this study was to incorporate the ethanolic extract of Bouea macrophylla into yoghurt and then assess the rodents for any toxicological effects. According to the findings of the nutritional analysis, each 100 mL serving of the newly formulated yoghurt contains 3.29 g of fat, 5.79 g of carbohydrates, 2.92 g of total protein, and 2.72 g of sugar. The ability of the newly developed yoghurt to stimulate the growth of Lactobacilli was demonstrated by the fact that the peak intensity of Lactobacillus species was measured at 1.2 × 106 CFU/g while the titratable acidity of the lactic acid was measured at 0.599 CFU/g. In order to carry out the toxicological evaluation, forty-eight male Sprague Dawley (SD) rats were utilized. Oral administration of single doses of 2000 mg/kg over the course of 14 days was used for the study of acute toxicity. Subacute toxicity was studied by giving animals Bouea macrophylla yoghurt (BMY) at repeated doses of 50, 250, 500, and 1000 mg/kg/day over a period of 28 days, while the control group was given normal saline. The results of the acute toxicity test revealed that rats treated with increasing doses up to a maximum of 2000 mg/kg exhibited no signs of toxicity. After an additional 14 days without treatment, acute toxicity of a single dose (2000 mg/kg) of BMY did not show any treatment-related toxicity in any of the rats that were observed. According to the data from the subacute toxicity study, there were no differences between the treated groups and the control groups in terms of food and water intake, body weight, plasma biochemistry (AST, ALT, ALP, and creatinine), haematological products, or organ weights. The architecture of the liver, heart, and kidney were all found to be normal upon histological examination. This indicates that oral consumption of BMY did not result in any negative effects being manifested in the rodents.


Assuntos
Extratos Vegetais , Iogurte , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Testes de Toxicidade Aguda , Compostos Fitoquímicos
16.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835154

RESUMO

Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos
17.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835384

RESUMO

Hydroxytyrosol (HT) is an olive polyphenol with anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of HT treatment on epithelial-mesenchymal transition (EMT) in primary human respiratory epithelial cells (RECs) isolated from human nasal turbinate. HT dose-response study and growth kinetic study on RECs was performed. Several approaches on HT treatment and TGFß1 induction with varying durations and methods was studied. RECs morphology and migration ability were evaluated. Vimentin and E-cadherin immunofluorescence staining and Western blotting [E-cadherin, vimentin, SNAIL/SLUG, AKT, phosphorylated (p)AKT, SMAD2/3 and pSMAD2/3] were performed after 72-h treatment. In silico analysis (molecular docking) of HT was performed to evaluate the potential of HT to bind with the TGFß receptor. The viability of the HT-treated RECs was concentration-dependent, where the median effective concentration (EC50) was 19.04 µg/mL. Testing of the effects of 1 and 10 µg/mL HT revealed that HT suppressed expression of the protein markers vimentin and SNAIL/SLUG while preserving E-cadherin protein expression. Supplementation with HT protected against SMAD and AKT pathway activation in the TGFß1-induced RECs. Furthermore, HT demonstrated the potential to bind with ALK5 (a TGFß receptor component) in comparison to oleuropein. TGFß1-induced EMT in RECs and HT exerted a positive effect in modulating the effects of EMT.


Assuntos
Células Epiteliais Alveolares , Suplementos Nutricionais , Transição Epitelial-Mesenquimal , Álcool Feniletílico , Proteínas Proto-Oncogênicas c-akt , Humanos , Caderinas/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/metabolismo , Álcool Feniletílico/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos
18.
Curr Stem Cell Res Ther ; 18(3): 417-428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35762553

RESUMO

BACKGROUND: Proteomic is capable of elucidating complex biological systems through protein expression, function, and interaction under a particular condition. OBJECTIVE: This study aimed to determine the potential of ascorbic acid alone in inducing differentially expressed osteoblast-related proteins in dental stem cells via the liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) approach. METHODS: The cells were isolated from deciduous (SHED) and permanent teeth (DPSC) and induced with 10 µg/mL of ascorbic acid. Bone mineralisation and osteoblast gene expression were determined using von Kossa staining and reverse transcriptase-polymerase chain reaction. The label-free protein samples were harvested on days 7 and 21, followed by protein identification and quantification using LC-MS/MS. Based on the similar protein expressed throughout treatment and controls for SHED and DPSC, overall biological processes followed by osteoblast-related protein abundance were determined using the PANTHER database. STRING database was performed to determine differentially expressed proteins as candidates for SHED and DPSC during osteoblast development. RESULTS: Both cells indicated brownish mineral stain and expression of osteoblast-related genes on day 21. Overall, a total of 700 proteins were similar among all treatments on days 7 and 21, with 482 proteins appearing in the PANTHER database. Osteoblast-related protein abundance indicated 31 and 14 proteins related to SHED and DPSC, respectively. Further analysis by the STRING database identified only 22 and 11 proteins from the respective group. Differential expressed analysis of similar proteins from these two groups revealed ACTN4 and ACTN1 as proteins involved in both SHED and DPSC. In addition, three (PSMD11/RPN11, PLS3, and CLIC1) and one (SYNCRIP) protein were differentially expressed specifically for SHED and DPSC, respectively. CONCLUSION: Proteome differential expression showed that ascorbic acid alone could induce osteoblastrelated proteins in SHED and DPSC and generate specific differentially expressed protein markers.


Assuntos
Ácido Ascórbico , Dente Decíduo , Humanos , Ácido Ascórbico/farmacologia , Cromatografia Líquida , Polpa Dentária , Proteômica , Espectrometria de Massas em Tandem , Células-Tronco , Diferenciação Celular , Células Cultivadas , Canais de Cloreto
19.
Mini Rev Med Chem ; 23(6): 734-745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36173047

RESUMO

Nanotechnology has been widely studied in biomedical applications in the last decade. The revolution in nanotechnology triggers the fabrication of nanomaterials with novel properties and functionalities, making the research in nanosensors and biomedical rapidly expanding. Nanosensor application has improved the sensitivity by enhancing their catalytic activity, conductivity, and biocompatibility. Calixarene is excellent as a sensing element used as a sensor due to its unique host-guest properties. Three major types of calixarene which are extensively studied are calix[4]arene, calix[6]arene, and calix[8]arene. These organic nanomaterials resemble vase-like supramolecular structures and exhibit valuable properties. Calixarene's basic molecular design is the cyclic phenol tetramer with four aryl groups, perfect for molecular recognition such as cations, transition metal ions, and heavy metals. Calixarenes may form stable complexes with biomolecules in developing biosensors for protein, enzyme, and antibody sensing. Calixarene's lower rim can be modified for optimum molecular interaction with guest molecules such as anions, cations, and neutral molecules. The lower ring has welldefined conformation properties and cavities, which allow trapping guest drugs such as imatinib, paclitaxel, and temozolomide. Calixarene also possesses good biocompatibility and innocuousness and gained attention for cancer treatment due to the response to multiple stimuli, stability, avoiding non-specific cell uptake, and reaching the target for treatment effect. This review paper focuses on the synthesis and characteristics of calixarene applied in nanosensors as an ideal complex agent in drug transportation and controlled drug released for biomedical research.


Assuntos
Calixarenos , Calixarenos/química , Calixarenos/metabolismo , Conformação Molecular , Proteínas , Cátions
20.
Front Physiol ; 13: 937988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582359

RESUMO

Endometriosis occurs when endometrial-like tissue forms and grows outside the uterus due to oestrogen-induced epithelial-mesenchymal transition in the female reproductive tract. Factors that suppress this event could become potential therapeutic agents against disease occurrence and progression. However, an overview of these studies is still lacking. This review assessed the impact of a number factors on oestrogen-mediated epithelial-mesenchymal transition in the emergence of several diseases in the female reproductive tract, primarily endometriosis. The association between epithelial-mesenchymal transition and Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome was also investigated. Oestrogen, Wnt4 and epithelial-mesenchymal transition were chosen as keywords in Scopus, PubMed, and Web of Science searches performed on 28th June 2021. Study selection was refined to cancer-irrelevant, English, original articles published between years 2011-2021. The full-text assessment was carried out for topic-related articles after title and abstract screening. Included studies were summarised and assessed for their risk of bias using the Office of Health Assessment and Translation tool. In this review, 10 articles investigating oestrogen and epithelial-mesenchymal transition in the female reproductive tract were summarised and classified into two groups: seven studies under 'factor'-modulated epithelial-mesenchymal transition and three studies under 'factor'-manipulated oestrogen-induced epithelial-mesenchymal transition. The current evidence proposes that epithelial-mesenchymal transition is one of the prime causes of reproductive-related disease. This event could be mediated by distinct stimuli, specifically oestrogen and Wnt4 aberration. The results of this review suggest that oestrogen and Wnt4 participate in epithelial-mesenchymal transition in vaginal epithelial cells in MRKH syndrome, adopting from the theories of endometriosis development, which could therefore serve as a foundation for novel target treatment, specifically related to vaginal epithelialisation, to ensure better surgical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...