Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(2): e0272721, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35286150

RESUMO

p53, as an important tumor suppressor protein, has recently been implicated in host antiviral defense. The present study found that the expression of mandarin fish (Siniperca chuatsi) p53 (Sc-p53) was negatively associated with infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) proliferation as well as the expression of glutaminase 1 (GLS1) and glutaminolysis pathway-related enzymes glutamate dehydrogenase (GDH) and isocitrate dehydrogenase 2 (IDH2). This indicated that Sc-p53 inhibited the replication and proliferation of ISKNV and SCRV by negatively regulating the glutaminolysis pathway. Moreover, it was confirmed that miR145-5p could inhibit c-Myc expression by targeting the 3' untranslated region (UTR). Sc-p53 could bind to the miR145-5p promoter region to promote its expression and to further inhibit the expression of c-Myc. The expression of c-Myc was proved to be positively correlated with the expression of GLS1 as well. All these suggested a negative relationship between the Sc-p53/miR145-5p/c-Myc pathway and GLS1 expression and glutaminolysis. However, it was found that after ISKNV and SCRV infection, the expressions of Sc-p53, miR145-5p, c-Myc, and GLS1 were all significantly upregulated, which did not match the pattern in normal cells. Based on the results, it was suggested that ISKNV and SCRV infection altered the Sc-p53/miR145-5p/c-Myc pathway. All of above results will provide potential targets for the development of new therapeutic strategies against ISKNV and SCRV. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) as major causative agents have caused a serious threat to the mandarin fish farming industry (J.-J. Tao, J.-F. Gui, and Q.-Y. Zhang, Aquaculture 262:1-9, 2007, https://doi.org/10.1016/j.aquaculture.2006.09.030). Viruses have evolved the strategy to shape host-cell metabolism for their replication (S. K. Thaker, J. Ch'ng, and H. R. Christofk, BMC Biol 17:59, 2019, https://doi.org/10.1186/s12915-019-0678-9). Our previous studies showed that ISKNV replication induced glutamine metabolism reprogramming and that glutaminolysis was required for efficient replication of ISKNV and SCRV. In the present study, the mechanistic link between the p53/miR145-5p/c-Myc pathway and glutaminolysis in the Chinese perch brain (CPB) cells was provided, which will provide novel insights into ISKNV and SCRV pathogenesis and antiviral treatment strategies.


Assuntos
Doenças dos Peixes , Iridoviridae , Percas , Rhabdoviridae , Animais , Antivirais , Encéfalo/metabolismo , China , Doenças dos Peixes/genética , Iridoviridae/genética , Iridoviridae/metabolismo , Percas/metabolismo , Rhabdoviridae/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Fish Shellfish Immunol ; 120: 686-694, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968711

RESUMO

c-Myc is a transcription factor and master regulator of cellular metabolism, and plays a critical role in virus replication by regulating glutamine metabolism. In this study, the open-reading frame (ORF) of c-Myc, designated as Sc-c-Myc, was cloned and sequenced. Multiple alignment of the amino acid sequence showed that the conserved domain of Sc-c-Myc, including the helix-loop-helix-zipper (bHLHzip) domain and Myc N-terminal region, shared high identities with other homologues from different species. Sc-c-Myc mRNA was widely expressed in the examined tissues of mandarin fish, and the higher mRNA levels was expressed in hind kidney. Moreover, mRNA and protein level of Sc-c-Myc was significantly increased in the Chinese perch brain (CPB) cells and spleen of mandarin fish post infection with infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV). Sc-c-Myc overexpression promoted ISKNV and SCRV replication, on the contrary, knocking down Sc-c-Myc restrained ISKNV and SCRV replication. These results indicated that Sc-c-Myc involved in ISKNV and SCRV replication and proliferation, providing a potential target for the development of new therapic strategy against ISKNV and SCRV.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Perciformes , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Iridoviridae , Perciformes/genética , Perciformes/virologia , RNA Mensageiro , Rhabdoviridae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...