Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 1013891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533181

RESUMO

The dried and ripe fruits of Alpinia oxyphylla and ripe fruits of Alpinia oxyphylla Miquel (AO) have the effects of tonifying kidney-essence and nourishing intelligence and thus have been widely used in treating dementia. Alzheimer's disease (AD) is a typical form of neurodegenerative dementia with kidney-essence deficiency in Traditional Chinese Medicine (TCM). So far, there is a lack of systematic studies on the biological basis of tonifying kidney-essence and nourishing intelligence and the corresponding phytochemicals. In this study, we investigated the targets of AO in tonifying kidney-essence and nourishing intelligence based on the key pathophysiological processes of neurodegenerative dementia. According to ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry data and Lipinski's rule of five, 49 bioactive phytochemicals from AO were identified, and 26 of them were found to target 168 key molecules in the treatment of neurodegenerative dementia. Nine phytochemicals of AO were shown to target acetylcholinesterase (ACHE), and 19 phytochemicals were shown to target butyrylcholinesterase (BCHE). A database of neurodegenerative dementia with kidney-essence deficiency involving 731 genes was constructed. Furthermore, yakuchinone B, 5-hydroxy-1,7-bis (4-hydroxy-3-methoxyphenyl) heptan-3-one (5-HYD), oxyhylladiketone, oxyphyllacinol, butyl-ß-D-fructopyranoside, dibutyl phthalate, chrysin, yakuchinone A, rhamnetin, and rhamnocitrin were identified as the key phytochemicals from AO that regulate the pathogenesis of neurodegenerative dementia in a multitargeted manner. The approach of studying the pharmacological mechanism underlying the effects of medicinal plants and the biological basis of TCM syndrome may be helpful in studying the translation of TCM.

2.
Front Pharmacol ; 13: 877806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529440

RESUMO

Alzheimer's disease (AD) is the most common cause of neurodegenerative dementia and one of the top medical concerns worldwide. Currently, the approved drugs to treat AD are effective only in treating the symptoms, but do not cure or prevent AD. Although the exact causes of AD are not understood, it is recognized that tau aggregation in neurons plays a key role. Chuanxiong Rhizoma (CR) has been widely reported as effective for brain diseases such as dementia. Thus, we explored the protections of CR in AD by a tau pathogenesis-based network pharmacology approach. According to ultra-HPLC with triple quadrupole mass spectrometry data and Lipinski's rule of five, 18 bioactive phytochemicals of CR were screened out. They were shown corresponding to 127 tau pathogenesis-related targets, among which VEGFA, IL1B, CTNNB1, JUN, ESR1, STAT3, APP, BCL2L1, PTGS2, and PPARG were identified as the core ones. We further analyzed the specific actions of CR-active phytochemicals on tau pathogenesis from the aspects of tau aggregation and tau-mediated toxicities. It was shown that neocnidilide, ferulic acid, coniferyl ferulate, levistilide A, Z-ligustilide, butylidenephthalide, and caffeic acid can be effective in reversing tau hyperphosphorylation. Neocnidilide, senkyunolide A, butylphthalide, butylidenephthalide, Z-ligustilide, and L-tryptophan may be effective in promoting lysosome-associated degradation of tau, and levistilide A, neocnidilide, ferulic acid, L-tryptophan, senkyunolide A, Z-ligustilide, and butylidenephthalide may antagonize tau-mediated impairments of intracellular transport, axon and synaptic damages, and neuron death (especially apoptosis). The present study suggests that acting on tau aggregation and tau-mediated toxicities is part of the therapeutic mechanism of CR against AD.

3.
Aging (Albany NY) ; 13(11): 15078-15099, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051074

RESUMO

Depression is a complex neuropsychiatric disease involved multiple targets and signaling pathways. Systems pharmacology studies could potentially present a comprehensive molecular mechanism to delineate the anti-depressant effect of emodin (EMO). In this study, we investigated the anti-depressant effects of EMO in the chronic unpredictable mild stress (CUMS) rat model of depression and gained insights into the underlying mechanisms using systems pharmacology and molecular simulation analysis. Forty-three potential targets of EMO for treatment of depression were obtained. GO biological process analysis suggested that the biological functions of these targets mainly involve the regulation of reactive oxygen species metabolic process, response to lipopolysaccharide, regulation of inflammatory response, etc. KEGG pathway enrichment analysis showed that the PI3K-Akt signaling pathway, insulin resistance, IL-17 signaling pathway were the most significantly enriched signaling pathways. The molecular docking analysis revealed that EMO might have a strong combination with ESR1, AKT1 and GSK3B. Immunohistochemical staining and Western blotting showed that 2 weeks' EMO treatment (80 mg/kg/day) reduced depression related microglial activation, neuroinflammation and altered PI3K-Akt signaling pathway. Our findings provide a systemic pharmacology basis for the anti-depressant effects of EMO.


Assuntos
Antidepressivos/farmacologia , Emodina/farmacologia , Animais , Antidepressivos/uso terapêutico , Comportamento Animal , Depressão/complicações , Depressão/tratamento farmacológico , Emodina/química , Emodina/uso terapêutico , Ontologia Genética , Genoma , Inflamação/patologia , Masculino , Microglia/patologia , Simulação de Acoplamento Molecular , Neurônios/metabolismo , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Córtex Pré-Frontal/patologia , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Transdução de Sinais , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico
4.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807157

RESUMO

Alzheimer's disease (AD) is a growing concern in modern society, and effective drugs for its treatment are lacking. Uncaria rhynchophylla (UR) and its main alkaloids have been studied to treat neurodegenerative diseases such as AD. This study aimed to uncover the key components and mechanism of the anti-AD effect of UR alkaloids through a network pharmacology approach. The analysis identified 10 alkaloids from UR based on HPLC that corresponded to 90 anti-AD targets. A potential alkaloid target-AD target network indicated that corynoxine, corynantheine, isorhynchophylline, dihydrocorynatheine, and isocorynoxeine are likely to become key components for AD treatment. KEGG pathway enrichment analysis revealed the Alzheimers disease (hsa05010) was the pathway most significantly enriched in alkaloids against AD. Further analysis revealed that 28 out of 90 targets were significantly correlated with Aß and tau pathology. These targets were validated using a Gene Expression Omnibus (GEO) dataset. Molecular docking studies were carried out to verify the binding of corynoxine and corynantheine to core targets related to Aß and tau pathology. In addition, the cholinergic synapse (hsa04725) and dopaminergic synapse (hsa04728) pathways were significantly enriched. Our findings indicate that UR alkaloids directly exert an AD treatment effect by acting on multiple pathological processes in AD.


Assuntos
Alcaloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Alcaloides/análise , Alcaloides/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Humanos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos de Espiro/farmacologia , Uncaria/química
5.
Front Pharmacol ; 12: 758049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992531

RESUMO

Presently, the treatment options for ischemic stroke (IS) are limited due to the complicated pathological process of the disease. Chuanxiong Rhizome (CR), also known as Conioselinum anthriscoides "Chuanxiong" (rhizome), is the most widely used traditional Chinese medicine for treating stroke. This study aimed to uncover the key phytochemicals and biological functions of CR against IS through a network pharmacology approach combining with IS pathophysiology analysis. We employed permanent unilateral common carotid artery ligation to construct a mouse model of global cerebral ischemia and found that cerebral ischemia injuries were improved after 7 days of gavage treatment of CR (1,300 mg/kg/day). CR exerts protective effects on neurons mainly by acting on targets related to synaptic structure, synaptic function, neuronal survival and neuronal growth. A total of 18 phytochemicals from CR based on UHPLC-MS/MS that corresponded to 85 anti-IS targets. Coniferyl ferulate, neocnidilide and ferulic acid were identified as the key phytochemicals of CR against IS. Its brain protective effects involve anti-inflammatory, anti-oxidative stress, and anti-cell death activities and improves blood circulation. Additionally, the two most important synergistic effects of CR phytochemicals in treating IS are prevention of infection and regulation of blood pressure. In brain samples of Sham mice, L-tryptophan and vanillin were detected, while L-tryptophan, gallic acid, vanillin and cryptochlorogenic acid were detected in IS mice by UHPLC-MS/MS. Our findings provide a pathophysiology relevant pharmacological basis for further researches on IS therapeutic drugs.

6.
Front Pharmacol ; 12: 806984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975502

RESUMO

Presently, there is a lack of effective disease-modifying drugs for the treatment of Alzheimer's disease (AD). Uncaria rhynchophylla (UR) and its predominant active phytochemicals alkaloids have been studied to treat AD. This study used a novel network pharmacology strategy to identify UR alkaloids against AD from the perspective of AD pathophysiological processes and identified the key alkaloids for specific pathological process. The analysis identified 10 alkaloids from UR based on high-performance liquid chromatography (HPLC) that corresponded to 127 targets correlated with amyloid-ß (Aß) pathology, tau pathology and Alzheimer disease pathway. Based on the number of targets correlated with AD pathophysiological processes, angustoline, angustidine, corynoxine and isocorynoxeine are highly likely to become key phytochemicals in AD treatment. Among the 127 targets, JUN, STAT3, MAPK3, CCND1, MMP2, MAPK8, GSK3B, JAK3, LCK, CCR5, CDK5 and GRIN2B were identified as core targets. Based on the pathological process of AD, angustoline, angustidine and isocorynoxeine were identified as the key UR alkaloids regulating Aß production and corynoxine, isocorynoxeine, dihydrocorynatheine, isorhynchophylline and hirsutine were identified as key alkaloids that regulate tau phosphorylation. The findings of this study contribute to a more comprehensive understanding of the key alkaloids and mechanisms of UR in the treatment of AD, as well as provide candidate compounds for drug research and development for specific AD pathological processes.

7.
J Cell Mol Med ; 24(12): 6928-6942, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32364678

RESUMO

Acidosis, a common feature of cerebral ischaemia and hypoxia, plays a key role in these pathological processes by aggravating the ischaemic and hypoxic injuries. To explore the mechanisms, in this research, we cultured primary neurons in an acidic environment (potential of hydrogen [pH]6.2, 24 hours) to mimic the acidosis. By proteomic analysis, 69 differentially expressed proteins in the acidic neurons were found, mainly related to stress and cell death, synaptic plasticity and gene transcription. And, the acidotic neurons developed obvious alterations including increased neuronal death, reduced dendritic length and complexity, reduced synaptic proteins, tau hyperphosphorylation, endoplasmic reticulum (ER) stress activation, abnormal lysosome-related signals, imbalanced oxidative stress/anti-oxidative stress and decreased Golgi matrix proteins. Then, melatonin (1 × 10-4  mol/L) was used to pre-treat the cultured primary neurons before acidic treatment (pH6.2). The results showed that melatonin partially reversed the acidosis-induced neuronal death, abnormal dendritic complexity, reductions of synaptic proteins, tau hyperphosphorylation and imbalance of kinase/phosphatase. In addition, acidosis related the activations of glycogen synthase kinase-3ß and nuclear factor-κB signals, ER stress and Golgi stress, and the abnormal autophagy-lysosome signals were completely reversed by melatonin. These data indicate that melatonin is beneficial for neurons against acidosis-induced injuries.


Assuntos
Acidose/patologia , Melatonina/farmacologia , Neurônios/patologia , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Espaço Extracelular/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Neurônios/efeitos dos fármacos , Organelas/efeitos dos fármacos , Organelas/metabolismo , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Estresse Fisiológico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/patologia , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...