Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Value Health ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641060

RESUMO

OBJECTIVES: The primary focus of this research is the proposition of a methodological framework for the clinical application of the long COVID symptoms and severity score (LC-SSS). This tool is not just a self-reported assessment instrument developed and validated but serves as a standardized, quantifiable means to monitor the diverse and persistent symptoms frequently observed in individuals with long COVID. METHODS: A 3-stage process was used to develop, validate, and establish scoring standards for the LC-SSS. Validation measures included correlations with other patient-reported measures, confirmatory factor analysis, Cronbach's α for internal consistency, and test-retest reliability. Scoring standards were determined using K-means clustering, with comparative assessments made against hierarchical clustering and the Gaussian Mixture Model. RESULTS: The LC-SSS showed correlations with EuroQol 5-Dimension 5-Level (rs = -0.55), EuroQol visual analog scale (rs = -0.368), Patient Health Questionnaire-9 (rs = 0.538), Beck Anxiety Inventory (rs = 0.689), and Insomnia Severity Index (rs = 0.516), confirming its construct validity. Structural validity was good with a comparative fit index of 0.969, with Cronbach's α of 0.93 indicating excellent internal consistency. Test-retest reliability was also satisfactory (intraclass correlation coefficient 0.732). K-means clustering identified 3 distinct severity categories in individuals living with long COVID, providing a basis for personalized treatment strategies. CONCLUSIONS: The LC-SSS provides a robust and valid tool for assessing long COVID. The severity categories established via K-means clustering demonstrate significant variation in symptom severity, informing personalized treatment and improving care quality for patients with long COVID.

2.
J Oncol ; 2022: 5120342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310909

RESUMO

Background: The rate of ovarian cancer (OC) is one of the highest in women's reproductive systems. An improperly expressed microRNA (miRNA) has been discovered to have a vital role in the pathophysiology of OC. However, more research into OC's miRNA-message RNA (mRNA) gene interaction network is required. Methods: Firstly, the microarray data sets GSE25405 and GSE119055 from the GEO (Gene Expression Omnibus) database were downloaded and then analyzed with the GEO2R tool aiming at identifying DEMs (differential expressed miRNAs) between ovarian malignant tissue and ovarian normal tissue. The whole consistently changed miRNAs were then screened out to be candidate DEMs. For estimating underlying upstream transcription factors, FunRich was employed. miRNet was utilized to determine putative DEMs' downstream target genes. The R program was then used to do the GO annotation as well as the analysis of KEGG pathway enrichment for target genes. The PPI (protein-protein interaction), as well as the DEM-hub gene networks, were created by the Cytoscape software and STRING database. Finally, we chose the GSE74448 dataset to test the precision of hub gene expressions. Results: We have screened out six (five upregulated and one downregulated) DEMs. The majority of upregulated and downregulated DEMs are likely regulated by SP1 (specificity protein 1). SP4 (s protein 4), POU2F1 (POU class 2 homeobox 1), MEF2A (myocyte-specific enhancer factor 2A), ARID3A (AT-rich interaction domain 3A), and EGR1 (early growth response 1) can regulate upregulated and downregulated DEMs. We have found 807 target genes (656 upregulated and 151 downregulated DEM), being generally enriched in focal adhesion and proteoglycans in cancer, gastric cancer, hepatocellular carcinoma, as well as breast cancer. The majority of hub genes are projected to be controlled by hsa-miR-429, hsa-miR-140-5p, hsa-miR-199a-5p, and hsa-miR-199a-3p after the DEM-hub gene network was built. VEGFA (vascular endothelial growth factor A), EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit), and HIF1A (hypoxia inducible factor 1 subunit alpha) expressions are consistent with the GSE74448 dataset in the first 18 hub genes. Conclusion: We have built an underlying miRNA-mRNA interacting network in OC, giving us unparalleled insight into the disease's diagnosis and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...