Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(7): e29775, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949184

RESUMO

Dengue fever is a mosquito-borne viral disease caused by the dengue virus (DENV). It poses a public health threat globally and, while most people with dengue have mild symptoms or are asymptomatic, approximately 5% of affected individuals develop severe disease and need hospital care. However, knowledge of the molecular mechanisms underlying dengue infection and the interaction between the virus and its host remains limited. In the present study, we performed a quantitative proteomic and N-glycoproteomic analysis of serum from 19 patients with dengue and 11 healthy people. The results revealed distinct proteomic and N-glycoproteomic landscapes between the two groups. Notably, we report for the first time the changes in the serum N glycosylation pattern following dengue infection and provide abundant information on glycoproteins, glycosylation sites, and intact N-glycopeptides using recently developed site-specific glycoproteomic approaches. Furthermore, a series of key functional pathways in proteomic and N-glycoproteomic were identified. Collectively, our findings significantly improve understanding of host and DENV interactions and the general pathogenesis and pathology of DENV, laying a foundation for functional studies of glycosylation and glycan structures in dengue infection.


Assuntos
Vírus da Dengue , Dengue , Glicoproteínas , Proteômica , Humanos , Dengue/sangue , Dengue/virologia , Proteômica/métodos , Glicoproteínas/sangue , Glicosilação , Masculino , Feminino , Adulto , Proteoma/análise , Pessoa de Meia-Idade
2.
Curr Protein Pept Sci ; 25(6): 438-442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38934364

RESUMO

'Structure determines function' is a consensus in the current biological community, but the structural characteristics corresponding to a certain function have always been a hot field of scientific exploration. A peptide is a bio-active molecule that is between the size of an antibody and a small molecule. Still, the gastrointestinal barrier and the physicochemical properties of peptides have always limited the oral administration of peptides. Therefore, we analyze the main ways oral peptide conversion strategies of peptide modification and permeation enhancers. Based on our analysis of the structure of natural oral peptides, which can be absorbed through the gastrointestinal tract, we believe that the design strategy of natural stapled peptides based on disulfide bonds is good for oral peptide design. This cannot only be used to identify anti-gastrointestinal digestive structural proteins in nature but also provide a solid structural foundation for the construction of new oral peptide drugs.


Assuntos
Dissulfetos , Peptídeos , Dissulfetos/química , Administração Oral , Humanos , Ciclização , Peptídeos/química , Animais , Desenho de Fármacos
4.
Front Cell Infect Microbiol ; 14: 1332666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495649

RESUMO

Background: The immune response to hepatitis B vaccine may be influenced by numerous factors, and patients with non/low response re-exposed to hepatitis B virus remain susceptible. Thus, a better understanding of the underlying mechanisms of non/low immune response in infants born to Hepatitis B surface antigen (HBsAg)-positive mothers is essential. Methods: 100 infants born to HBsAg-positive mothers from 2015 to 2020 were enrolled in the study, further divided into the non/low response group (n=13) and the moderate strong response group (n=87) based on the quantification of hepatitis B surface antibody at 12 months of age. The differential expression of 48 immune-related cytokines in the two groups was compared and analyzed in detail. The key cytokines were further identified and clinically predictive models were developed. Results: We found that 13 cytokines were lowly expressed and one cytokine was highly expressed in the non/low response group, compared with the moderate strong response group at birth. In addition, 9 cytokines were lowly expressed and one cytokine was highly expressed in the non/low response group at 12 months of age. Furthermore, we found that IL-5 and HGF were promising predictors for predicting the immunization response to hepatitis B vaccine in infants, and the combination of the two cytokines showed the best predictive efficiency, with an area under the curve (AUC) value of 0.844. Conclusion: The present study provides a theoretical basis on cytokines for developing and implementing effective immunotherapies against non/low immune response in infants born to HBsAg-positive mothers.


Assuntos
Vacinas contra Hepatite B , Hepatite B , Recém-Nascido , Lactente , Feminino , Humanos , Antígenos de Superfície da Hepatite B , Interleucina-5 , Citocinas , Vacinação , Imunidade , Fator de Crescimento de Hepatócito
5.
Signal Transduct Target Ther ; 9(1): 40, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355661

RESUMO

Emerging and recurrent infectious diseases caused by human coronaviruses (HCoVs) continue to pose a significant threat to global public health security. In light of this ongoing threat, the development of a broad-spectrum drug to combat HCoVs is an urgently priority. Herein, we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). These aptamers have nanomolar affinity with the nucleocapsid protein (NP) of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and also show excellent binding efficiency to the N proteins of both SARS, MERS, HCoV-OC43 and -NL63 with affinity KD values of 1.31 to 135.36 nM. Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant (BA.5) with EC50 values at 2.00 nM and 41.08 nM, respectively. The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs (-229E and -HKU1). In conclusion, we have identified six aptamers with a high pan-coronavirus antiviral activity, which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas do Nucleocapsídeo/genética , Antivirais/farmacologia
6.
J Med Virol ; 96(1): e29355, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179882

RESUMO

It is widely acknowledged that infectious diseases have wrought immense havoc on human society, being regarded as adversaries from which humanity cannot elude. In recent years, the advancement of Artificial Intelligence (AI) technology has ushered in a revolutionary era in the realm of infectious disease prevention and control. This evolution encompasses early warning of outbreaks, contact tracing, infection diagnosis, drug discovery, and the facilitation of drug design, alongside other facets of epidemic management. This article presents an overview of the utilization of AI systems in the field of infectious diseases, with a specific focus on their role during the COVID-19 pandemic. The article also highlights the contemporary challenges that AI confronts within this domain and posits strategies for their mitigation. There exists an imperative to further harness the potential applications of AI across multiple domains to augment its capacity in effectively addressing future disease outbreaks.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Inteligência Artificial , Pandemias , Busca de Comunicante , Doenças Transmissíveis/diagnóstico
7.
Comput Struct Biotechnol J ; 21: 3728-3735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560123

RESUMO

Dengue fever (DF) and dengue hemorrhagic fever (DHF) are among the most common tropical diseases affecting humans. To analyze the risk of clinical and transmission of DF/DHF in Shenzhen, the surveillance on patients of all-age patients with dengue virus (DENV) infections was conducted. Our findings revealed that the majority of DENV-infected patients are young to middle-aged males, and the development of the disease is accompanied by abnormal changes in the percentages of neutrophils, lymphocytes, and basophils. Demographic analysis revealed that these patients is concentrated in areas such as Futian District, which may be due to the higher mosquito density and temperature than that in other area. Subsequent, mosquito infection experiments confirmed that the effect of temperature shift on DENV proliferation and transmission. Not only that, constant temperatures can enhance the spread of DENV, even increase the risk of epidemic. Thus, the role of innate immune response should be highlighted in the prediction of severe severity of DENV-infected patients, and temperature should be taken into account in the prevention and control of DENV. Introduction: Dengue fever (DF) and dengue hemorrhagic fever (DHF) are among the most common tropical diseases affecting humans, and which caused by the four dengue virus serotypes (DENV 1-4). Objectives: To analyze the risk of clinical and transmission of DF/DHF in Shenzhen. Methods: The surveillance on patients of all-age patients with dengue virus (DENV) infections was conducted. Results: Our findings revealed that the majority of DENV-infected patients are young to middle-aged males, and the development of the disease is accompanied by abnormal changes in the percentages of neutrophils, lymphocytes, and basophils. Demographic analysis revealed that these patients is concentrated in areas such as Futian District, which may be due to the higher mosquito density and temperature than that in other area. Subsequent, mosquito infection experiments confirmed that the effect of temperature shift on DENV proliferation and transmission. Not only that, constant temperatures can enhance the spread of DENV, even increase the risk of epidemic. Conclusion: 1. Elevated levels of neutrophils, lymphocytes, basophils, and temperature are all significant risk factors for dengue transmission and pathogenesis; 2. Temperature increasing is associated with a higher risk of dengue transmission; 3. Fluctuations in temperature around 28 °C (28 ± 5 °C) would increase dengue transmission.

8.
Cells ; 11(3)2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35159296

RESUMO

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , Imunidade/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/imunologia , RNA/imunologia , Transcriptoma/imunologia , Células A549 , Animais , COVID-19/genética , COVID-19/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Influenza Humana/genética , Influenza Humana/virologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 1 de Interferon/metabolismo , MicroRNAs/genética , MicroRNAs/imunologia , MicroRNAs/metabolismo , Pandemias/prevenção & controle , RNA/genética , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , RNA-Seq/métodos , SARS-CoV-2/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcriptoma/genética
10.
PLoS Negl Trop Dis ; 14(11): e0008920, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253189

RESUMO

Advances in technology have greatly stimulated the understanding of insect-specific viruses (ISVs). Unfortunately, most of these findings are based on sequencing technology, and laboratory data are scarce on the transmission dynamics of ISVs in nature and the potential effects of these viruses on arboviruses. Mesonivirus is a class of ISVs with a wide geographical distribution. Recently, our laboratory reported the isolation of a novel strain of mesonivirus, Yichang virus (YCV), from Culex mosquitoes, China. In this study, the experimental infection of YCV by the oral route for adult and larvae mosquitoes, and the vertical transmission has been conducted, which suggests that YCV could adopt a mixed-mode transmission. Controlled experiments showed that the infectivity of YCV depends on the mosquito species, virus dose, and infection route. The proliferation curve and tissue distribution of YCV in Cx. quinquefasciatus and Ae. albopictus showed that YCV is more susceptible to Ae. albopictus and is located in the midgut. Furthermore, we also assessed the interference of YCV with flaviviruses both in vitro and in vivo. YCV significantly inhibited the proliferation of DENV-2 and ZIKV, in cell culture, and reduced transmission rate of DENV-2 in Ae. albopictus. Our work provides insights into the transmission of ISVs in different mosquito species during ontogeny and their potential ability to interact with mosquito-borne viruses.


Assuntos
Aedes/virologia , Culex/virologia , Infecções por Nidovirales/transmissão , Nidovirales/fisiologia , Aedes/crescimento & desenvolvimento , Animais , Culex/crescimento & desenvolvimento , Vírus da Dengue/crescimento & desenvolvimento , Cavalos , Transmissão Vertical de Doenças Infecciosas , Larva/virologia , Mosquitos Vetores/virologia , Replicação Viral , Microbiologia da Água , Zika virus/crescimento & desenvolvimento
11.
Life Sci ; 191: 104-110, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28970114

RESUMO

AIMS: Alpha-fetoprotein (AFP) is regarded as a diagnostic and prognostic biomarker and a potential therapeutic target for hepatocellular carcinoma (HCC). However, the regulation of AFP expression in HCC remains poorly understood. This study aimed to investigate the mechanism by which AFP expression is regulated by p55PIK, an isoform of PI3K. MAIN METHODS: Human HCC cell lines (HepG2 and Huh-7) were treated with p55PIK specific competitive inhibitor or shRNA, or p55PIK overexpression vector, in the absence or presence of NF-κB inhibitor PDTC. AFP expression was detected by quantitative real-time PCR and Western blotting. NF-κB responsive elements in AFP enhancer region were characterized by luciferase reporter assay. KEY FINDINGS: p55PIK significantly stimulated the expression of AFP by activating NF-κB signaling pathway in HCC cells. Furthermore, two NF-κB binding sites in AFP enhancer region were identified to be primarily responsible for p55PIK mediated upregulation of AFP expression. SIGNIFICANCE: p55PIK/NF-κB signaling plays an important role in the upregulation of AFP expression in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , alfa-Fetoproteínas/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA