Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 20(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35621963

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a hepatic metabolic syndrome usually accompanied by fatty degeneration and functional impairment. The aim of the study was to determine whether monkfish peptides (LPs) could ameliorate high-fat diet (HFD)-induced NAFLD and its underlying mechanisms. NAFLD was induced in mice by giving them an HFD for eight weeks, after which LPs were administered in various dosages. In comparison to the HFD control group: body weight in the LP-treated groups decreased by 23-28%; triacylglycerol levels in the blood decreased by 16-35%; and low-density lipoproteins levels in the blood decreased by 23-51%. Additionally, we found that LPs elevated the activity of hepatic antioxidant enzymes and reduced the inflammatory reactions within fatty liver tissue. Investigating the effect on metabolic pathways, we found that in LP-treated mice: the levels of phospho-AMP-activated protein kinase (p-AMPK), and phospho-acetyl CoA carboxylase (p-ACC) in the AMP-activated protein kinase (AMPK) pathway were up-regulated and the levels of downstream sterol regulatory element-binding transcription factor 1 (SREBP-1) were down-regulated; lipid oxidation increased and free fatty acid (FFA) accumulation decreased (revealed by the increased carnitine palmitoyltransferase-1 (CPT-1) and the decreased fatty acid synthase (FASN) expression, respectively); the nuclear factor erythroid-2-related factor 2 (Nrf2) antioxidant pathway was activated; and the levels of heme oxygenase-1 (HO-1) and nicotinamide quinone oxidoreductase 1 (NQO1) were increased. Overall, all these findings demonstrated that LPs can improve the antioxidant capacity of liver to alleviate NAFLD progression mainly through modulating the AMPK and Nrf2 pathways, and thus it could be considered as an effective candidate in the treatment of human NAFLD.


Assuntos
Dieta Hiperlipídica , Peixes , Hepatopatia Gordurosa não Alcoólica , Peptídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Peixes/metabolismo , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Peptídeos/farmacologia , Peptídeos/uso terapêutico
2.
Mar Drugs ; 20(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447899

RESUMO

Fucoxanthin, a xanthophyll carotenoid abundant in brown algae, is reported to have several biological functions, such as antioxidant, anti-inflammatory, and anti-tumor activities, in mice. We investigated the effects and mechanisms of fucoxanthin in the mixture oleate/palmitate = 2/1(FFA)-induced nonalcoholic fatty liver disease (NAFLD) cell model in this study. The results showed that the content of superoxide dismutase in the FFA group was 9.8 ± 1.0 U/mgprot, while that in the fucoxanthin high-dose (H-Fx) group (2 µg/mL) increased to 22.9 ± 0.6 U/mgprot. The content of interleukin-1ß in the FFA group was 89.3 ± 3.6 ng/mL, while that in the H-Fx group was reduced to 53.8 ± 2.8 ng/mL. The above results indicate that fucoxanthin could alleviate the FFA-induced oxidative stress and inflammatory levels in the liver cells. Oil red-O staining revealed visible protrusions and a significant decrease in the number of lipid droplets in the cytoplasm of cells in the fucoxanthin group. These findings on the mechanisms of action suggest that fucoxanthin can repair FFA-induced NAFLD via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and nuclear factor erythroid-2-related factor 2-mediated (Nrf2) signaling pathway, as well as by downregulating the expression of the Toll-like receptor 4-mediated (TLR4) signaling pathway. Fucoxanthin exhibited alleviating effects in the FFA-induced NAFLD model and could be explored as a potential anti-NAFLD substance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácidos Graxos não Esterificados/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Xantofilas/metabolismo , Xantofilas/farmacologia
3.
Mar Drugs ; 18(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957435

RESUMO

BACKGROUND: Marine fish meat has been widely used for the extraction of bioactive peptides. This study was aimed to optimize the preparation of monkfish muscle peptides (LPs) using response surface methodology (RSM) and explore the antioxidant activities of <1 kDa LPs. METHODS: Peptides were prepared from the muscles of monkfish (Lophius litulon), and five proteases were tested to hydrolyze muscle proteins. The hydrolysate that was treated using neutrase showed the highest degree of hydrolysis (DH) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities. RESULTS: The optimized conditions were as follows: water/material ratio of 5.4:1, a time span of 5 h, pH of 7.0, enzyme concentration of 2000 U/g, and temperature of 45 °C; the maximum DPPH scavenging activity and DH were 92.861% and 19.302%, respectively. LPs exhibited appreciable antioxidant activities, including DPPH radical, hydroxyl radical, 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate (ABTS) radical, and superoxide anion scavenging activities. LPs attenuated H2O2-related oxidative injury in RAW264.7 cells, reduced the reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and increased the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) levels. CONCLUSION: We concluded that LPs could be an ideal source of bioactive peptides from monkfish and also have pharmaceutical potential.


Assuntos
Antioxidantes/farmacologia , Proteínas de Peixes/farmacologia , Peróxido de Hidrogênio/toxicidade , Macrófagos/efeitos dos fármacos , Proteínas Musculares/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Catalase/metabolismo , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/metabolismo , Glutationa Peroxidase/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Malondialdeído/metabolismo , Camundongos , Proteínas Musculares/isolamento & purificação , Proteínas Musculares/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Células RAW 264.7 , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA