Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 664: 423-432, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484511

RESUMO

Prussian Blue analogs (PBAs) are a suitable aqueous zinc-ion batteries (AZIBs) cathode material, but they face issues related to low specific capacity and cycling lifespan due to insufficient active sites and poor ion de-intercalation structural stability. In this study, Mn-Prussian Blue Analog (Mn-PBA) is fabricated using a simple co-precipitation method and the morphology of Mn-PBA is further optimized through artificially manipulating concentration gradients strategy, effectively enhancing the structural stability of Zn2+ de-intercalation. Furthermore, the introduction of Mn established dual Zn2+ active centers in Mn-PBA (Mn-O and Fe(CN)6]4-/[Fe(CN)6]3-), leading to an increased specific capacity. As a proof of concept for AZIBs, the optimized Mn-PBA-3 cathode exhibits a high reversible specific capacity of 143.5 mAh/g and maintains a capacity retention of 88.5 % after 250 cycles at 1 A/g, surpassing commercial MnO2 (30.5 mAh/g after 100 cycles). Mn-PBA-3 also delivers a high capacity of 79.0 mA h g-1 after 2000 cycles of 10 A/g. The mechanism of the Zn2+ double redox reaction of Mn-PBA-3 has been revealed in detail by in situ Raman and a series of ex situ techniques. Under a high operating voltage window of 0-1.9 V, Zn//Mn-PBA-3 demonstrates a capacity of 99.3 mAh/g after 800 cycles (5 A/g) by assembling zinc ion button battery. This work has reference significance for structurally modulated PBAs used in high performance AZIBs.

2.
Small ; 20(2): e2305386, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668264

RESUMO

The significant attraction toward aqueous proton batteries (APBs) is attributable to their expedited kinetics, elevated safety profile, and economical feasibility. Nevertheless, their practical implement is significantly blocked by the unsatisfactory energy density due to the limited cathode materials. Herein, vanadium hexacyanoferrate Prussian blue analog (VOHCF) is introduced as a potentially favorable cathode material for APBs. The findings demonstrate that this VOHCF electrode exhibits a notable reversible capacity of 102.7 mAh g-1 and exceptional cycling stability, with 95.4% capacity retention over 10 000 cycles at 10 A g-1 . It is noteworthy that this is the detailed instance of VOHCF being proposed as a cathode for APBs. Combining the in situ characterization techniques and theoretical simulations, the origins of excellent proton storage performance are revealed as the multiple redox mechanisms with double active centers of ─C≡N group and V═O bond in VOHCF as well as the robust structure stability. A proton full cell with excellent performance is further achieved by coupling the VOHCF cathode and diquinoxalino[2,3-a:2',3'-c] phenazine (HATN) anode, demonstrating the great potential of VOHCF in practical applications. This work could provide fundamental understanding to the development of feasible cathode materials for proton storage device.

3.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903353

RESUMO

Lithium-ion batteries (LIBs) have become the preferred battery system for portable electronic devices and transportation equipment due to their high specific energy, good cycling performance, low self-discharge, and absence of memory effect. However, excessively low ambient temperatures will seriously affect the performance of LIBs, which are almost incapable of discharging at -40~-60 °C. There are many factors affecting the low-temperature performance of LIBs, and one of the most important is the electrode material. Therefore, there is an urgent need to develop electrode materials or modify existing materials in order to obtain excellent low-temperature LIB performance. A carbon-based anode is one candidate for use in LIBs. In recent years, it has been found that the diffusion coefficient of lithium ion in graphite anodes decreases more obviously at low temperatures, which is an important factor limiting its low-temperature performance. However, the structure of amorphous carbon materials is complex; they have good ionic diffusion properties, and their grain size, specific surface area, layer spacing, structural defects, surface functional groups, and doping elements may have a greater impact on their low-temperature performance. In this work, the low-temperature performance of LIBs was achieved by modifying the carbon-based material from the perspectives of electronic modulation and structural engineering.

4.
J Colloid Interface Sci ; 633: 199-206, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36446212

RESUMO

Lithium-ion batteries (LIBs) have received much attention because of their environmental, financial, and safety concerns. The advantages of aqueous electrochemical energy storage include environmental friendliness and safety, and the development of prepared electrode materials is predicted to alleviate these issues. A redox-active organic compound, 7,7,8,8­tetracyanoquinodimethane (TCNQ), is a suitable electrode for aqueous batteries. In this work, the porous and electronic interconnected structure of TCNQ is designed by electronic modulation and structure engineering. With the reduced graphene oxide (rGO) in situ homogeneous loading TCNQ by a one-step facile approach, the exquisite architecture has enhanced conductivity and connected conductive networks, favoring the storage and transportation of NH4+ or electrons in aqueous electrolytes. As a cathode, the obtained TCNQ-rGO exhibits superior performance for NH4+ batteries with an improved reversible capacity of 92.7 mAh/g at 1 A/g of quadruple capacity boosting to pure TCNQ and stable cycle life (5000 cycles at 10 A/g). The adjustment of the loading ratio of TCNQ and rGO for the cycling performance has been studied in detail. Furthermore, the superior ammonium storage mechanism of the TCNQ-rGO hybrid is thoroughly discussed by in situ Raman or ex situ measurements, which also determine the redox activity center groups of the TCNQ-rGO hybrid. Energy level calculations are conducted to help illustrate its potential as an electrode material. Our work demonstrates that electronic modulation and structural engineering of TCNQ can improve the electrochemical performance of molecular organic compound-based electrodes for aqueous rechargeable batteries in a simple and effective way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...