Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell Death Dis ; 15(4): 244, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575607

RESUMO

The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.


Assuntos
Interleucina-18 , Neoplasias Pancreáticas , Humanos , Glicosilação , Interleucina-18/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas/metabolismo , Vias Biossintéticas , Hexosaminas , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 513-524, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38229544

RESUMO

Thioredoxin-interacting protein (TXNIP) is a crucial thioredoxin-binding protein that is recognized as a tumor suppressor in diverse malignancies, such as breast cancer, lung cancer, hepatocellular carcinoma, and thyroid cancer. However, the specific role and molecular mechanisms of TXNIP in the pathogenesis and progression of pancreatic cancer cells have not been determined. In this study, we investigate the relationship between TXNIP expression and overall survival prognosis in pancreatic cancer patients. Mechanistic studies are conducted to reveal the role of TXNIP in pancreatic cancer cell proliferation, migration, and regulation during malignancy. Our findings indicate that patients with high TXNIP expression have a more favorable prognosis. In vitro experiments with pancreatic cell lines show that overexpression of TXNIP suppresses the proliferation and migration of pancreatic cancer cells. Furthermore, we find that TXNIP inhibits the activation of the MAPK signaling pathway, thereby decreasing the malignant potential of pancreatic cancer. In conclusion, our study reveals TXNIP as a promising new predictive marker and therapeutic target for pancreatic cancer.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Neoplasias Hepáticas/patologia , Proliferação de Células , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
3.
Nat Commun ; 14(1): 6991, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914684

RESUMO

Follicle-stimulating hormone (FSH) is involved in mammalian reproduction via binding to FSH receptor (FSHR). However, several studies have found that FSH and FSHR play important roles in extragonadal tissue. Here, we identified the expression of FSHR in human and mouse pancreatic islet ß-cells. Blocking FSH signaling by Fshr knock-out led to impaired glucose tolerance owing to decreased insulin secretion, while high FSH levels caused insufficient insulin secretion as well. In vitro, we found that FSH orchestrated glucose-stimulated insulin secretion (GSIS) in a bell curve manner. Mechanistically, FSH primarily activates Gαs via FSHR, promoting the cAMP/protein kinase A (PKA) and calcium pathways to stimulate GSIS, whereas high FSH levels could activate Gαi to inhibit the cAMP/PKA pathway and the amplified effect on GSIS. Our results reveal the role of FSH in regulating pancreatic islet insulin secretion and provide avenues for future clinical investigation and therapeutic strategies for postmenopausal diabetes.


Assuntos
Hormônio Foliculoestimulante , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Secreção de Insulina , Glucose/farmacologia , Glucose/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais , Insulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mamíferos/metabolismo
4.
Cell Death Dis ; 14(11): 778, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012214

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant digestive tract tumor with limited clinical treatments. Transforming acidic coiled-coil-containing protein 3 (TACC3) is a component of the centrosome axis and a member of the TACC family, which affect mitosis and regulate chromosome stability and are involved in tumor development and progression. However, the role of TACC3 in PDAC remains elusive. In this study, by exploiting the TCGA database, we found that high TACC3 expression in PDAC is associated with poor prognosis. shRNA-mediated TACC3 knockdown caused S phase arrest of the cell cycle and inhibited proliferation in PDAC cell lines. Through RNA sequencing and protein co-immunoprecipitation combined with mass spectrometry, KIF11 was identified as a protein that interacts with TACC3. TACC3 stabilizes and regulates KIF11 protein expression levels in PDAC cells through physical interaction. Knockdown of TACC3 or KIF11 resulted in abnormal spindle formation during cell division both in vitro and in vivo. Pharmacological inhibition of TACC3 or KIF11 can suppress tumor cell proliferation and promote apoptosis. Our studies further demonstrated that high expression of TACC3 and KIF11 mediated the resistance of PDAC to gemcitabine, and deficiency of TACC3 or KIF11 increased the sensitivity of PDAC cells to chemotherapy. In conclusion, our study reveals the fundamental role of TACC3 expression in PDAC cell proliferation and chemoresistance, suggesting that TACC3 can be used as a molecular marker to evaluate the prognosis of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Animais , Camundongos
5.
Cancer Lett ; 576: 216411, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757903

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant with limited treatment options. Deubiquitinases (DUBs), which cleave ubiquitin on substrates, can regulate tumor progression and are appealing therapeutic targets, but there are few related studies in PDAC. In our study, we screened the expression levels and prognostic value of USP family members based on published databases and selected USP10 as the potential interventional target in PDAC. IHC staining of the PDAC microarray revealed that USP10 expression was an adverse clinical feature of PDAC. USP10 promoted tumor growth both in vivo and in vitro in PDAC. Co-IP experiments revealed that USP10 directly interacts with PABPC1. Deubiquitination assays revealed that USP10 decreased the K27/29-linked ubiquitination level of the RRM2 domain of PABPC1. Deubiquitinated PABPC1 was able to couple more CLK2 mRNA and eIF4G1, which increased the translation efficiency. Replacing PABPC1 with a mutant that could not be ubiquitinated impaired USP10 knock-down-mediated tumor suppression in PDAC. Targeting USP10 significantly delayed the growth of cell-derived xenograft and patient-derived xenograft tumors. Collectively, our study first identified USP10 as the DUB of PABPC1 and provided a rationale for potential therapeutic options for PDAC with high USP10 expression.

6.
FEBS J ; 290(18): 4577-4590, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37245155

RESUMO

Intrinsic drug resistance mechanisms of tumor cells often reduce intracellular drug concentration to suboptimal levels. Epithelial-to-mesenchymal transition (EMT) is a pivotal process in tumor progression and metastasis that confers an aggressive phenotype as well as resistance to chemotherapeutics. Therefore, it is imperative to develop novel strategies and identify new targets to improve the overall efficacy of cancer treatment. We developed SN38 (active metabolite of irinotecan)-assembled glycol chitosan nanoparticles (cSN38) for the treatment of pancreatic ductal adenocarcinoma (PDAC). Furthermore, cSN38 and the TGF-ß1 inhibitor LY364947 formed composite nanoparticles upon self-assembly (cSN38 + LY), which obviated the poor aqueous solubility of LY364947 and enhanced drug sensitivity. The therapeutic efficacy of cSN38 + LY nanotherapeutics was studied in vitro and in vivo using suitable models. The cSN38 nanoparticles exhibited an antitumor effect that was significantly attenuated by TGF-ß-induced EMT. The cellular uptake of SN38 was impeded during EMT, which affected the therapeutic efficacy. The combination of LY364947 and cSN38 markedly enhanced the cellular uptake of SN38, increased cytotoxic effects, and inhibited EMT in PDAC cells in vitro. Furthermore, cSN38 + LY significantly inhibited PDAC xenograft growth in vivo. The cSN38 + LY nanoparticles increased the therapeutic efficacy of cSN38 via repressing the EMT of PDAC cells. Our findings provide a rationale for designing nanoscale therapeutics to combat PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fator de Crescimento Transformador beta/genética , Transição Epitelial-Mesenquimal/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
7.
Acta Biochim Biophys Sin (Shanghai) ; 55(6): 923-937, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021976

RESUMO

The pathogenesis of pancreatic cancer involves substantial metabolic reprogramming, resulting in abnormal proliferation of tumor cells. This tumorigenic reprogramming is often driven by genetic mutations, such as activating mutations of the KRAS oncogene and inactivating or deletions of the tumor suppressor genes SMAD4, CDKN2A, and TP53, which play a critical role in the initiation and development of pancreatic cancer. As a normal cell gradually develops into a cancer cell, a series of signature characteristics are acquired: activation of signaling pathways that sustain proliferation; an ability to resist growth inhibitory signals and evade apoptosis; and an ability to generate new blood vessels and invade and metastasize. In addition to these features, recent research has revealed that metabolic reprogramming and immune escape are two other novel characteristics of tumor cells. The effect of the interactions between tumor and immune cells on metabolic reprogramming is a key factor determining the antitumor immunotherapy response. Lipid metabolism reprogramming, a feature of many malignancies, not only plays a role in maintaining tumor cell proliferation but also alters the tumor microenvironment by inducing the release of metabolites that in turn affect the metabolism of normal immune cells, ultimately leading to the attenuation of the antitumor immune response and resistance to immunotherapy. Pancreatic cancer has been found to have substantial lipid metabolism reprogramming, but the mechanisms remain elusive. Therefore, this review focuses on the mechanisms regulating lipid metabolism reprogramming in pancreatic cancer cells to provide new therapeutic targets and aid the development of new therapeutic strategies for pancreatic cancer.


Assuntos
Neoplasias , Neoplasias Pancreáticas , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias/metabolismo , Transdução de Sinais , Mutação , Microambiente Tumoral , Neoplasias Pancreáticas
8.
Int J Cancer ; 152(11): 2396-2409, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757203

RESUMO

Macrophage is an essential part of the tumor immune microenvironment of pancreatic ductal adenocarcinoma. In our study, we explored the CXCR4+ macrophages subset on its prognosis value, immune profile and distinct function in pancreatic cancer progression. Specimens from 102 postoperative pancreatic patients were analyzed by flow cytometry or immune-fluorescence, and the prognostic value of CXCR4+ macrophages infiltration was further determined by Cox regression. In silico analysis on TCGA, ICGC database and single-cell sequencing of pancreatic ductal adenocarcinoma further validated our findings. We found that high CXCR4+ macrophages infiltration was associated with poor overall survival (P < .01) and disease-free survival (P < .05) as an independent factor. CXCR4+ macrophages exhibited an M2 protumor phenotype with high expression of CD206. The function of CXCR4+ macrophages was further analyzed in the murine orthotopic PDAC model with its tumor promotion effect and inhibition of CD8+ T cells. Mechanistic and RNA-seq analysis showed that CXCR4+ macrophages participated in extracellular matrix remodeling procedures and especially secreted SPARC through CXCR4/PI3K/Akt pathway promoting tumor proliferation and migration. Our study reveals that CXCR4+ macrophages infiltration is an indicator of poor prognosis of PDAC and targeting these cells was potentially crucial in immunotherapy of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/patologia , Linfócitos T CD8-Positivos , Macrófagos/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Microambiente Tumoral , Receptores CXCR4 , Neoplasias Pancreáticas
9.
Biochim Biophys Acta Rev Cancer ; 1878(1): 188845, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476563

RESUMO

Mast cells (MCs) are crucial cells participating in both innate and adaptive immune processes that play important roles in protecting human health and in the pathophysiology of various diseases, such as allergies, cardiovascular diseases, and autoimmune diseases. In the context of tumors, MCs are a non-negligible population of immune cells in the tumor microenvironment (TME). In most tumor types, MCs accumulate in both the tumor tissue and the surrounding tissue. MCs interact with multiple components of the TME, affecting TME remodeling and the tumor cell fate. However, controversy persists regarding whether MCs contribute to tumor progression or trigger an anti-tumor immune response. This review focuses on the context of the TME to explore the specific properties and functions of MCs and discusses the crosstalk that occurs between MCs and other components of the TME, which affect tumor angiogenesis and lymphangiogenesis, invasion and metastasis, and tumor immunity through different mechanisms. We also anticipate the potential role of MCs in cancer immunotherapy, which might expand upon the success achieved with existing cancer therapies.


Assuntos
Mastócitos , Neoplasias , Humanos , Mastócitos/patologia , Neoplasias/patologia , Neovascularização Patológica/patologia , Imunoterapia , Imunidade , Microambiente Tumoral
10.
Front Immunol ; 13: 956984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225934

RESUMO

Pancreatic cancer has an exclusive inhibitory tumor microenvironment characterized by a dense mechanical barrier, profound infiltration of immunosuppressive cells, and a lack of penetration of effector T cells, which constitute an important cause for recurrence and metastasis, resistance to chemotherapy, and insensitivity to immunotherapy. Neoadjuvant therapy has been widely used in clinical practice due to its many benefits, including the ability to improve the R0 resection rate, eliminate tumor cell micrometastases, and identify highly malignant tumors that may not benefit from surgery. In this review, we summarize multiple aspects of the effect of neoadjuvant therapy on the immune microenvironment of pancreatic cancer, discuss possible mechanisms by which these changes occur, and generalize the theoretical basis of neoadjuvant chemoradiotherapy combined with immunotherapy, providing support for the development of more effective combination therapeutic strategies to induce potent immune responses to tumors.


Assuntos
Terapia Neoadjuvante , Neoplasias Pancreáticas , Humanos , Imunoterapia , Microambiente Tumoral , Neoplasias Pancreáticas
11.
J Neuroendocrinol ; 34(6): e13112, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35380016

RESUMO

BACKGROUND: The optimal duration of capecitabine combined with temozolomide (CapTem) for metastatic pancreatic neuroendocrine tumours (PanNETs) remains controversial. The present study aimed to assess the activity and safety of prolonged CapTem and Cap maintenance therapy in patients with metastatic PanNETs. METHODS: Retrospective real-world data of 94 patients with metastatic PanNETs were obtained from one cancer centre. Fifteen patients were treated with Cap maintenance therapy after fixed 12-13 cycles of CapTem (group I), 44 patients were treated with prolonged CapTem until disease progression (group II), and 35 patients were treated with fixed 12-13 cycles of CapTem (group III). RESULTS: The mean ± SE follow-up period was 41.79 ± 26.31 months. The median CapTem treatment duration was 12 months in group I and 14 months in group II. The median time to best partial response was 12 months both in groups I and group II. The objective response rates of groups I and II were significantly higher than those of group III (73.3%, 41.9%, and 20%, respectively, p = .002). The median progression-free survival (mPFS) of group I and group II was significantly higher than that of group III (35 months, 26 months vs. 19 months, p < .001). Safety analysis of the three groups indicated rare events of grade 3-4 toxicities, with nausea, vomiting, fatigue, and anaemia being the most common adverse effects. CONCLUSIONS: Patients with PanNETs who responded well to CapTem treatment may benefit from prolonged CapTem and Cap maintenance therapy after fixed cycles. Prospective studies are encouraged to further explore the prolonged CapTem treatment and maintenance therapy.


Assuntos
Tumores Neuroendócrinos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Capecitabina/efeitos adversos , Capecitabina/uso terapêutico , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/etiologia , Tumores Neuroendócrinos/patologia , Estudos Prospectivos , Estudos Retrospectivos , Temozolomida/uso terapêutico
12.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409105

RESUMO

Common pancreatic diseases have caused significant economic and social burdens worldwide. The interstitial microenvironment is involved in and plays a crucial part in the occurrence and progression of pancreatic diseases. Innate lymphoid cells (ILCs), an innate population of immune cells which have only gradually entered our visual field in the last 10 years, play an important role in maintaining tissue homeostasis, regulating metabolism, and participating in regeneration and repair. Recent evidence indicates that ILCs in the pancreas, as well as in other tissues, are also key players in pancreatic disease and health. Herein, we examined the possible functions of different ILC subsets in common pancreatic diseases, including diabetes mellitus, pancreatitis and pancreatic cancer, and discussed the potential practical implications of the relevant findings for future further treatment of these pancreatic diseases.


Assuntos
Imunidade Inata , Pancreatopatias , Homeostase , Humanos , Linfócitos/metabolismo , Pancreatopatias/metabolismo
13.
EBioMedicine ; 79: 104016, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35483273

RESUMO

BACKGROUND: Previously, we uncovered a patient subgroup with highly malignant pancreatic cancer with serum markers CEA+/CA125+/CA19-9 ≥ 1000 U/mL (triple-positive, TP). However, the underlying immunosuppressive mechanism in the tumor immune microenvironment (TIME) of this subgroup is still unknown. METHODS: Human tissues were analyzed by flow cytometry, mass cytometry, and immunofluorescence staining. Mouse pancreatic ILC2s were expanded in vivo and used for RNA sequencing, chromatin immunoprecipitation (ChIP), and chemotaxis assays. FINDINGS: Through microarray data, we identified the accumulation of the hypoxia-induced factor-1α (HIF-1α) pathway in these TP patients. Via flow and mass cytometry, we discovered that a special subset of ILC2s were highly infiltrated in TP patients. Under the hypoxia microenvironment, ILC2s were found undergo a transition to a IL10+ regulatory phenotype, we named ILCregs which was correlated with pancreatic ductal adenocarcinoma (PDAC) progression. Further, neoadjuvant chemotherapy could ameliorate hypoxic tumor microenvironments so that significantly reverse the regulatory phenotype of ILCregs. Moreover, most tumor ILC2 were CD103-, which indicated its circulatory origin. The expression of Ccr2 was significantly upregulated on mouse ILCregs, and these cells selectively migrated to CCL2. INTERPRETATION: Our results indicate that the hypoxia microenvironment creates an immunosuppressive TIME by inducing ILCregs from a population of circulating group 2 ILCs in TP PDAC patients. FUNDING: This study was jointly supported by the National Natural Science Foundation of China (U21A20374, 82173091, and 81701630).


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Humanos , Hipóxia , Imunidade Inata , Terapia de Imunossupressão , Linfócitos/metabolismo , Camundongos , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
14.
Acta Biochim Biophys Sin (Shanghai) ; 54(2): 261-270, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130616

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide and HCC patients often develop drug resisitene. Long non-coding RNAs (LncRNAs) are closely related to cell cycle, growth, development, differentiation, and apoptosis. Abnormally expressed lncRNAs have been proved to mediate drug resistance in tumor cells. However, the effect of LIMT on drug resistance has not been explored in HCC. In this study, we explored the effect of long non-coding RNA LIMT on drug resistance and its underlying mechanism in hepatocellular carcinoma (HCC). Our results showed that LncRNA LINC01089 (LIMT) expression is downregulated in 78.57% (44/56) of 56 HCC tumor tissue samples. LIMT expression is also downregulated in HCC cells compared with that in normal liver LO2 cells. Inhibition of LIMT increases the resistance to sorafenib and promotes cell invasion via regulation of epithelial to mesenchymal transition (EMT) in HCC. StarBase V3.0 was used to predict the potential binding site of miR-665 in . Furthermore, miR-665 participates in sorafenib resistance and also regulates the level of EMT-related proteins in HCC cells. A rescue experiment demonstrated that silencing of eliminats the inhibitory effect of the miR-665 inhibitor on sorafenib resistance in HCC cells. Taken together, our findings revealed that downregulation of LIMT increases the resistance of HCC to sorafenib via miR-665 and EMT. Therefore, LIMT, which serves as a therapeutically effective target, will provide new hope for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
15.
Cancer Lett ; 530: 142-155, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077803

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) usually presents infrequent infiltration of T lymphocytes. The known immune-checkpoint inhibitors to date focus on activating T cells and manifest limited effectiveness in PDAC. SIGLEC15 was identified as a novel tumor-associated macrophage (TAM)-related immune-checkpoint in other cancer types, while its immunosuppressive role and clinical significance remained unclear in PDAC. In our study, SIGLEC15 presented immunosuppressive relevance in PDAC via bioinformatic analysis and expressed on TAM and PDAC cells. SIGLEC15+ TAM, rather than SIGLEC15+ PDAC cells or SIGLEC15- TAM, correlated with poor prognosis and immunosuppressive microenvironment in the PDAC microarray cohort. Compared with SIGLEC15- TAM, SIGLEC15+ TAM presented an M2-like phenotype that could be modulated by SIGLEC15 in a tumor cell-dependent manner. In mechanism, SIGLEC15 interacted with PDAC-expressed sialic acid, preferentially α-2, 3 sialic acids, to stimulate SYK phosphorylation in TAM, which further promoted its immunoregulatory cytokines and chemokines production. In vivo, SIGLEC15+ TAM also presented an M2-like phenotype, accelerated tumor growth, and facilitated immunosuppressive microenvironment, which was greatly abolished by SYK inhibitor. Our study highlighted a novel M2-promoting function of SIGLEC15 and strongly suggested SIGLEC15 as a potential immunotherapeutic target for PDAC.


Assuntos
Imunoglobulinas/genética , Proteínas de Membrana/genética , Neoplasias Pancreáticas/genética , Macrófagos Associados a Tumor/patologia , Animais , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Citocinas/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Terapia de Imunossupressão/métodos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/patologia , Células THP-1 , Microambiente Tumoral/genética , Neoplasias Pancreáticas
16.
Endocr Pract ; 28(3): 292-297, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34454077

RESUMO

OBJECTIVE: The role of alternate sequential administration of sunitinib and capecitabine/temozolomide (CAPTEM) in metastatic pancreatic neuroendocrine tumors (PanNETs) remains unexplored. We thus aimed to analyze the efficacy and tolerability of this strategy in advanced grade 1/grade 2 PanNETs. METHODS: In total, data of 43 patients with metastatic PanNET were collected from a real-world database of a cancer center. Twenty-four patients were treated with sunitinib followed by CAPTEM (group 1), and 19 patients were treated with CAPTEM followed by sunitinib (group 2). RESULTS: Twenty-three patients were treated with first-line sunitinib or CAPTEM, and 20 patients were pretreated with somatostatin analog (SSA) or SSA in combination with transcatheter arterial chemoembolization. The objective response rate with first-line treatment was similar in both groups, whereas that with second-line treatment was higher in group 1 than in group 2, albeit with no significant differences (21.1% vs 5.3%, respectively; P = .205). Median progression-free survival (mPFS) for first-line and second-line treatments did not differ between the 2 groups (11 and 12 months vs 12 and 8 months, respectively). Following subgroup analyses, treatment with first-line sunitinib and sunitinib after pretreated SSA had a longer mPFS than that with second-line sunitinib after CAPTEM (11 months vs 8 months, respectively; P = .046), whereas treatment with first-line CAPTEM and CAPTEM after pretreated SSA had an mPFS similar to that of second-line CAPTEM after sunitinib treatment. CAPTEM and sunitinib had similar tolerability. CONCLUSION: Alternating sunitinib and CAPTEM were well tolerated and associated with similar mPFS in grade 1/grade 2 PanNETs. However, larger prospective studies are required to investigate the efficacy of alternate sequential therapies for metastatic PanNET.


Assuntos
Capecitabina , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Sunitinibe , Temozolomida , Protocolos de Quimioterapia Combinada Antineoplásica , Capecitabina/administração & dosagem , Capecitabina/uso terapêutico , Quimioembolização Terapêutica , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Estudos Retrospectivos , Sunitinibe/administração & dosagem , Sunitinibe/uso terapêutico , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico
17.
Front Immunol ; 13: 1081919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726981

RESUMO

Increasingly, patients with gastrointestinal tumors can benefit from immunotherapy, but not patients with pancreatic cancer. While this lack of benefit has been attributed to lower T-cell infiltration in pancreatic cancer, other studies have demonstrated the presence of numerous T cells in pancreatic cancer, suggesting another mechanism for the poor efficacy of immunotherapy. Single-cell RNA sequencing studies on the pancreatic cancer immune microenvironment have demonstrated the predominance of innate immune cells (e.g., macrophages, dendritic cells, mast cells, and innate immune lymphoid cells). Therefore, in-depth research on the source and function of innate immune lymphocytes in pancreatic cancer could guide pancreatic cancer immunotherapy.


Assuntos
Neoplasias Pancreáticas , Humanos , Imunoterapia , Imunidade Inata , Linfócitos T , Microambiente Tumoral , Neoplasias Pancreáticas
18.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 34-42, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36647720

RESUMO

Despite favorable responses to platinum-based chemotherapy in ovarian cancer (OC), chemoresistance is still a major cause of treatment failure. Hence, we develop a novel synthetic agent, COM33, to relieve the chemoresistance caused by carboplatin. The anti-cancerous effects of the combination of COM33 and carboplatin on OC are evaluated by cell viability, wound healing, and transwell invasion assays. A mechanistic investigation is carried out by using RNA-Seq analysis and then verified by western blot analysis and immunofluorescence microscopy. The safety and efficacy in vivo are evaluated using SKOV3 tumor-bearing nude mice. Results show that the co-administration of COM33 enhances the inhibitory effects of carboplatin on cancer cell viability, migration, and invasion in vitro and tumor growth in vivo. Furthermore, COM33 suppresses the carboplatin-induced epithelial-mesenchymal transition (EMT) by inhibiting the ERK signaling pathway. Additionally, we show that Twist1, the effector of the ERK signaling pathway, participates in carboplatin-induced EMT and is also inhibited by COM33. Our data show that the combination of carboplatin with COM33 is beneficial for chemotherapy against OC, which may be a potential novel anti-tumor strategy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias Ovarianas , Proteína 1 Relacionada a Twist , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Carboplatina/efeitos adversos , Carboplatina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Relacionada a Twist/antagonistas & inibidores , Proteína 1 Relacionada a Twist/metabolismo
19.
Cancers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34359579

RESUMO

Immunosuppression is an important factor for the poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Follicular helper T cells (Tfh cells) play an anti-tumor role in various malignant solid tumors and predict better patient prognosis. In the present study, we aimed to determine the immunosuppressive mechanism associated with Tfh cells and explore a new strategy to improve the tumor microenvironment of PDAC. Flow cytometry was used to detect the infiltration and proportion of Tfh cells in tumor tissues and peripheral blood from patients with PDAC. The spatial correlations of Tfh cells with related immune cells were evaluated using immunofluorescence. The function of Tfh cells was examined using in vitro and in vivo model systems. The high infiltration of Tfh cells predicted better prognosis in patients with PDAC. Tfh cells recruited CD8+ T cells and B cells by secreting C-X-C motif chemokine ligand 13 (CXCL13), and promoted the maturation of B cells into antibody-producing plasma cells by secreting interleukin 21 (IL-21), thereby promoting the formation of an immunoactive tumor microenvironment. The function of Tfh cells was inhibited by the programmed cell death 1 ligand 1 (PD-L1)/programmed cell death 1 (PD-1) signaling pathway in PDAC, which could be reversed using neoadjuvant chemotherapy. Treatment with recombinant CXCL13, IL-21 and Tfh cells alleviated tumor growth and enhanced the infiltration of CD8+ T cells and B cells, as well as B cell maturation in a PDAC mouse model. Our results revealed the important role of Tfh cells in mediating anti-tumor cellular immunity and humoral immunity in PDAC via secreting CXCL13 and IL-21 and determined a novel mechanism of immunosuppression in PDAC.

20.
Front Immunol ; 12: 577517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084158

RESUMO

Background: Extracellular traps (ETs) and tumor-infiltrating immune cells can contribute to disease progression. The clinical significance of tumor-infiltrating neutrophils and macrophages and related extracellular traps in pancreatic neuroendocrine tumors (pNETs) has not been fully elucidated. This study aimed to explore the prognostic value of tumor infiltration and ET formation by neutrophils and macrophages in pNETs. Methods: A total of 135 patients with radical resection of nonfunctional pNETs were analyzed retrospectively. Immunohistochemistry and immunofluorescence were utilized to stain tumor tissue sections. The recurrence-free survival (RFS) of subgroups determined by Kaplan-Meier analysis was compared with the log-rank test. Univariate and multivariate Cox regression analyses were used to identify independent prognostic factors. A nomogram was established to predict 3-year RFS. Results: Patients with high tumor-infiltrating neutrophils or macrophages or positive expression of neutrophils ETs or macrophage ETs displayed worse RFS (all p<0.05). Moreover, univariate and multivariate Cox regression analyses showed that neutrophil and macrophage infiltration and ETs were independent prognostic factors for RFS (all p<0.05). A combined parameter including WHO grade, TNM stage, tumor-infiltrating neutrophils and macrophages, and neutrophil and macrophage ETs had the highest C-index (0.866) and lowest Akaike information criteria (326.557). The calibration plot of nomogram composed of the combined parameter exhibited excellent prognostic values for 3-year RFS. Conclusions: Infiltration and ETs by neutrophils and macrophages can be used as biological indicators of patient prognosis, suggesting the treatment potential for targeting those in nonfunctional pNETs.


Assuntos
Armadilhas Extracelulares/imunologia , Macrófagos/imunologia , Tumores Neuroendócrinos/imunologia , Infiltração de Neutrófilos/imunologia , Neoplasias Pancreáticas/imunologia , Adulto , Feminino , Humanos , Estimativa de Kaplan-Meier , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/cirurgia , Nomogramas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...