Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gastroenterol ; 58(7): 668-681, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150773

RESUMO

BACKGROUND: The activation of hepatic stellate cells (HSCs) is the key step in the pathogenesis of liver fibrosis, which directly leads to fibrotic pathological changes in the hepatic tissue. Mitochondrial stress exacerbates inflammatory diseases by inducing pathogenic shifts in normal cells. However, the role of mitochondrial stress in HSC activation remains to be elucidated.  METHODS: We analyzed the effect of mitochondrial stress on HSC activation. An in vivo hepatic fibrosis model was established by intraperitoneal injection of 40% carbon tetrachloride (CCl4) for 12 weeks. Additionally, using in vitro approach, HSC-T6 cells were treated with 10 ng/mL platelet-derived growth factor-BB (PDGF-BB) for 24 h. RESULTS: Transcriptional activator 4 (ATF4) is highly expressed in fibrotic liver tissue samples and activated HSCs. We found that AAV8-shRNA-Atf4 alleviated liver fibrosis in rats. ATF4 promoted the activation of HSCs, which was induced by mitochondrial stress. The mechanisms involved ATF4 binding to a specific region of the tribble homologue 3 (TRIB3) promoter. Further, TRIB3 promoted HSCs activation mediated by mitochondrial stress. CONCLUSIONS: ATF4 induces mitochondrial stress by upregulating TRIB3, leading to the activation of HSCs. Therefore, the inhibition of ATF4 during mitochondrial stress may be a promising therapeutic target for liver fibrosis.


Assuntos
Células Estreladas do Fígado , Fígado , Ratos , Animais , Células Estreladas do Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Becaplermina/efeitos adversos , Becaplermina/metabolismo , Fibrose
2.
Int J Biol Macromol ; 211: 128-139, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35561854

RESUMO

Activation of hepatic stellate cells (HSCs) is a key cause of liver fibrosis. However, the mechanisms leading to the activation of HSCs are not fully understood. In the pathological process, acid-sensing ion channel 1a (ASIC1a) is widely involved in the development of inflammatory diseases, suggesting that ASIC1a may play an important role in liver fibrosis. We found that in an acidic environment, ASIC1a leads to HSC-T6 cell activation. Meanwhile, exosomes produced by activated HSC-T6 cells (HSC-EXOs) can be reabsorbed by quiescent HSC-T6 cells to promote their activation. Exosomes mainly carry miRNAs involved in intercellular information exchange. We performed exosome miRNA whole transcriptome sequencing. The results indicated that the acidic environment could alter the miRNA expression profile in the exosomes of HSC-T6 cells. Further studies revealed that ASIC1a promotes the activation of HSCs by regulating miR-301a-3p targeting B-cell translocation gene 1 (BTG1). In conclusion, our study found that ASIC1a may affect HSC activation through the exosomal miR-301a-3p/BTG1 axis, and inhibiting ASIC1a may be a promising treatment strategy for liver fibrosis.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Células Estreladas do Fígado/metabolismo , MicroRNAs , Canais Iônicos Sensíveis a Ácido/genética , Animais , Linhagem Celular , Exossomos/genética , Exossomos/metabolismo , Humanos , Cirrose Hepática/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos
3.
Front Pharmacol ; 13: 996667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588718

RESUMO

The activation of hepatic stellate cells (HSCs) is closely related to hepatic fibrosis and plays a key role in its occurrence and development. In the damaged liver, inhibition of the activation, proliferation, and clearance of HSCs is an important therapeutic strategy. However, the mechanism underlying the activation of HSCs is not completely clear. Acid-sensitive ion channel 1a (ASIC1a) is a cation channel activated by extracellular acid, which is responsible for the transport of Ca2+ and Na+ and participates in the activation of HSCs and the occurrence and development of many inflammatory diseases, suggesting that ASIC1a plays an important role in liver fibrosis. A previous study by the project team found that when the membrane channel protein ASIC1a was opened, intracellular Ca2+ levels increased, the expression of CaM/CaMKII in HSCs was high, and HSC was activated and proliferated. Therefore, we established an SD rat model of hepatic fibrosis and induced HSC-T6 activation by stimulating ASIC1a with acid in vitro. In vivo, CCl4 was used to induce liver fibrosis in rats, and different doses of KN93 (0.5, 1, and 2 mg/kg/d) and colchicine (0.1 mg/kg/d) were administered. Eight weeks later, the activities of ALT and AST in serum were measured and hematoxylin-eosin and Masson staining in liver tissue, and immunohistochemistry analysis were performed in SD rats. The expressions of ASIC1a, α-SMA, Collagen-1, CaM, and CaMKII were detected. In vitro, we activated HSC-T6 cells by stimulating ASIC1a with acid. The results showed that inhibition of ASIC1a could improve acid-induced HSCs activation. In addition, CaM/CaMKII was expressed in HSC of rats with hepatic fibrosis regulated by ASIC1a. After blocking or silencing the expression of CaMKII, the fibrosis marker protein can be down-regulated. KN93 also reduced inflammation and improved the activation, proliferation and fibrosis of HSC. In summary, we concluded that CaM/CaMKII participates in ASIC1a regulation of the proliferation and activation of HSC and promotes the occurrence of liver fibrosis.

4.
Biophys J ; 88(6): 4262-73, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15821161

RESUMO

Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO(2) nanoparticles in the colloidal solution. The LH2/TiO(2) assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO(2). The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO(2) nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO(2) nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO(2) nanoparticle in place of TiO(2) and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Proteínas de Bactérias/genética , Fenômenos Biofísicos , Biofísica , Coloides , Complexos de Proteínas Captadores de Luz/genética , Modelos Moleculares , Complexos Multiproteicos , Mutação , Nanoestruturas , Complexo de Proteína do Fotossistema II/genética , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética , Espectrofotometria , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA