Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 22(1): 106, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940921

RESUMO

BACKGROUND: The morphology of the adrenal tumor and the clinical statistics of the adrenal tumor area are two crucial diagnostic and differential diagnostic features, indicating precise tumor segmentation is essential. Therefore, we build a CT image segmentation method based on an encoder-decoder structure combined with a Transformer for volumetric segmentation of adrenal tumors. METHODS: This study included a total of 182 patients with adrenal metastases, and an adrenal tumor volumetric segmentation method combining encoder-decoder structure and Transformer was constructed. The Dice Score coefficient (DSC), Hausdorff distance, Intersection over union (IOU), Average surface distance (ASD) and Mean average error (MAE) were calculated to evaluate the performance of the segmentation method. RESULTS: Analyses were made among our proposed method and other CNN-based and transformer-based methods. The results showed excellent segmentation performance, with a mean DSC of 0.858, a mean Hausdorff distance of 10.996, a mean IOU of 0.814, a mean MAE of 0.0005, and a mean ASD of 0.509. The boxplot of all test samples' segmentation performance implies that the proposed method has the lowest skewness and the highest average prediction performance. CONCLUSIONS: Our proposed method can directly generate 3D lesion maps and showed excellent segmentation performance. The comparison of segmentation metrics and visualization results showed that our proposed method performed very well in the segmentation.


Assuntos
Neoplasias das Glândulas Suprarrenais , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem
2.
Diagnostics (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36673000

RESUMO

The air kerma is a key parameter in medical diagnostic radiology. Radiologists use the air kerma parameter to evaluate organ doses and any associated patient hazards. The air kerma can be simply described as the deposited kinetic energy once a photon passes through the air, and it represents the intensity of the radiation beam. Due to the heel effect in the X-ray sources of medical imaging systems, the air kerma is not uniform within the X-ray beam's field of view. Additionally, the X-ray tube voltage can also affect this nonuniformity. In this investigation, an intelligent technique based on the radial basis function neural network (RBFNN) is presented to predict the air kerma at every point within the fields of view of the X-ray beams of medical diagnostic imaging systems based on discrete and limited measured data. First, a diagnostic imaging system was modeled with the help of the Monte Carlo N Particle X version (MCNPX) code. It should be noted that a tungsten target and beryllium window with a thickness of 1 mm (no extra filter was applied) were used for modeling the X-ray tube. Second, the air kerma was calculated at various discrete positions within the conical X-ray beam for tube voltages of 40 kV, 60 kV, 80 kV, 100 kV, 120 kV, and 140 kV (this range covers most medical X-ray imaging applications) to provide the adequate dataset for training the network. The X-ray tube voltage and location of each point at which the air kerma was calculated were used as the RBFNN inputs. The calculated air kerma was also assigned as the output. The trained RBFNN model was capable of estimating the air kerma at any random position within the X-ray beam's field of view for X-ray tube voltages within the range of medical diagnostic radiology (20-140 kV).

3.
Sensors (Basel) ; 22(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433433

RESUMO

Around the world, the COVID-19 pandemic has created significant obstacles for education, driving people to discover workarounds to maintain education. Because of the excellent benefit of cheap-cost information distribution brought about by the advent of the Internet, some offline instructional activity started to go online in an effort to stop the spread of the disease. How to guarantee the quality of teaching and promote the steady progress of education has become more and more important. Currently, one of the ways to guarantee the quality of online learning is to use independent online learning behavior data to build learning performance predictors, which can provide real-time monitoring and feedback during the learning process. This method, however, ignores the internal correlation between e-learning behaviors. In contrast, the e-learning behavior classification model (EBC model) can reflect the internal correlation between learning behaviors. Therefore, this study proposes an online learning performance prediction model, SA-FEM, based on adaptive feature fusion and feature selection. The proposed method utilizes the relationship among features and fuses features according to the category that achieved better performance. Through the analysis of experimental results, the feature space mined by the fine-grained differential evolution algorithm and the adaptive fusion of features combined with the differential evolution algorithm can better support online learning performance prediction, and it is also verified that the adaptive feature fusion strategy based on the EBC model proposed in this paper outperforms the benchmark method.


Assuntos
COVID-19 , Pandemias , Humanos , Algoritmos , Estudantes
4.
Entropy (Basel) ; 24(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35626605

RESUMO

Learning analysis provides a new opportunity for the development of online education, and has received extensive attention from scholars at home and abroad. How to use data and models to predict learners' academic success or failure and give teaching feedback in a timely manner is a core problem in the field of learning analytics. At present, many scholars use key learning behaviors to improve the prediction effect by exploring the implicit relationship between learning behavior data and grades. At the same time, it is very important to explore the association between categories and prediction effects in learning behavior classification. This paper proposes a self-adaptive feature fusion strategy based on learning behavior classification, aiming to mine the effective E-learning behavior feature space and further improve the performance of the learning performance prediction model. First, a behavior classification model (E-learning Behavior Classification Model, EBC Model) based on interaction objects and learning process is constructed; second, the feature space is preliminarily reduced by entropy weight method and variance filtering method; finally, combined with EBC Model and a self-adaptive feature fusion strategy to build a learning performance predictor. The experiment uses the British Open University Learning Analysis Dataset (OULAD). Through the experimental analysis, an effective feature space is obtained, that is, the basic interactive behavior (BI) and knowledge interaction behavior (KI) of learning behavior category has the strongest correlation with learning performance.And it is proved that the self-adaptive feature fusion strategy proposed in this paper can effectively improve the performance of the learning performance predictor, and the performance index of accuracy(ACC), F1-score(F1) and kappa(K) reach 98.44%, 0.9893, 0.9600. This study constructs E-learning performance predictors and mines the effective feature space from a new perspective, and provides some auxiliary references for online learners and managers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...