Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(20): e2211562, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893428

RESUMO

High-resolution imaging is at the heart of the revolutionary breakthroughs of intelligent technologies, and it is established as an important approach toward high-sensitivity information extraction/storage. However, due to the incompatibility between non-silicon optoelectronic materials and traditional integrated circuits as well as the lack of competent photosensitive semiconductors in the infrared region, the development of ultrabroadband imaging is severely impeded. Herein, the monolithic integration of wafer-scale tellurene photoelectric functional units by exploiting room-temperature pulsed-laser deposition is realized. Taking advantage of the surface plasmon polaritons of tellurene, which results in the thermal perturbation promoted exciton separation, in situ formation of out-of-plane homojunction and negative expansion promoted carrier transport, as well as the band bending promoted electron-hole pair separation enabled by the unique interconnected nanostrip morphology, the tellurene photodetectors demonstrate wide-spectrum photoresponse from 370.6 to 2240 nm and unprecedented photosensitivity with the optimized responsivity, external quantum efficiency and detectivity of 2.7 × 107  A W-1 , 8.2 × 109 % and 4.5 × 1015  Jones. An ultrabroadband imager is demonstrated and high-resolution photoelectric imaging is realized. The proof-of-concept wafer-scale tellurene-based ultrabroadband photoelectric imaging system depicts a fascinating paradigm for the development of an advanced 2D imaging platform toward next-generation intelligent equipment.

2.
ACS Nano ; 16(8): 12852-12865, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35914000

RESUMO

A selective-area oxidation strategy is developed to polarize high-symmetry 2D layered materials (2DLMs). The dichroic ratio of the derived O-WS2/WS2 photodetector reaches ∼8, which is competitive among state-of-the-art polarization photodetectors. Finite-different time-domain simulations consolidate that the polarization-sensitive photoresponse is associated with anisotropic spacial confinement, which gives rise to distinct dielectric contrasts for linearly polarized light of various directions and thus the polarization-dependent near-field distribution. Furthermore, selective-area oxidation treatment brings about dual effects, comprising the in situ formation of seamless in-plane WS2 homojunctions by thickness tailoring and the formation of out-of-plane O-WS2/WS2 heterojunctions. As a consequence, the recombination of photocarriers is markedly suppressed, resulting in outstanding photosensitivity with the optimized responsivity, external quantum efficiency, and detectivity of 0.161 A/W, 49.4%, and 1.4 × 1011 Jones for an O-WS2/WS2 photodetector in a self-powered mode. A scheme of multiplexing optical communications is revealed by harnessing the intensity and polarization state of light as independent transmission channels. Furthermore, dynamic encryption by leveraging the polarization state as a secret key is proposed. In the end, broad universality is reinforced through the induction of linear dichroism within 2D WSe2 crystals. On the whole, this study provides an additional perspective on polarization optoelectronics based on 2DLMs.

3.
Mater Horiz ; 9(9): 2364-2375, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35876307

RESUMO

Low light absorption and limited carrier lifetime are critical obstacles inhibiting further performance improvement of 2D layered material (2DLM) based photodetectors, while scalable fabrication is an ongoing challenge prior to commercialization from the lab to market. Herein, wafer-scale SnS/ZIS hierarchical nanofilms, where out-of-plane SnS (O-SnS) is modified onto in-plane ZIS (I-ZIS), have been achieved by pulsed-laser deposition. The derived O-SnS/I-ZIS photodetector exhibits markedly boosted sensitivity as compared to a pristine ZIS device. The synergy of multiple functionalities contributes to the dramatic improvement, including the pronounced light-trapping effect of O-SnS by multiple scattering, the high-efficiency spatial separation of photogenerated electron-hole pairs by a type-II staggered band alignment and the promoted carrier transport enabled by the tailored electronic structure of ZIS. Of note, the unique architecture of O-SnS/I-ZIS can considerably expedite the carrier dynamics, where O-SnS promotes the electron transfer from SnS to ZIS whilst the I-ZIS enables high-speed electron circulation. In addition, the interlayer transition enables the bridging of the effective optical window to telecommunication wavelengths. Moreover, monolithic integration of arrayed devices with satisfactory device-to-device variability has been encompassed and a proof-of-concept imaging application is demonstrated. On the whole, this study depicts a fascinating functional coupling architecture toward implementing chip-scale integrated optoelectronics.

4.
Nanoscale ; 14(16): 6228-6238, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35403635

RESUMO

Over the past decade, 2D elemental semiconductors have emerged as an ever-increasingly important group in the 2D material family due to their simple crystal structures and compositions, and versatile physical properties. Taking advantage of the relatively small bandgap, outstanding carrier mobility, high air-stability and strong interactions with light, 2D tellurium (Te) has emerged as a compelling candidate for use in ultra-broadband photoelectric technologies. In this study, high-quality centimeter-scale Te nanofilms have been successfully produced by exploiting pulsed-laser deposition (PLD). By performing deposition on pre-patterned SiO2/Si substrates, a Te/Si 2D/3D heterojunction array is formed in situ. To our delight, taking advantage of the relatively small bandgap of Te, the Te/Si photodetectors demonstrate an ultra-broadband photoresponse from ultraviolet to near-infrared (370.6 nm to 2240 nm), enabling them to serve as important alternatives to conventional 2D materials such as MoS2. In addition, an outstanding on/off ratio of ∼108 and a fast response rate (a response/recovery time of 3.7 ms/4.4 ms) are achieved, which is associated with the large band offset and strong interfacial built-in electric field that contribute to suppressing the dark current and separating photocarriers. Beyond these, a 35 × 35 matrix array has been successfully constructed, where the devices exhibit comparable properties, with a production yield of 100% for 100 randomly tested devices. The average responsivity, external quantum efficiency and detectivity reach 249 A W-1, 76 350% and 1.15 × 1011 Jones, respectively, making the Te/Si devices among the best-performing 2D/3D heterojunction photodetectors. On the whole, this study has established that PLD is a promising technique for producing high-quality Te nanofilms with good scalability, and the Te/Si 2D/3D heterojunction provides a promising platform for implementing high-performance ultra-broadband photoelectronic technologies.

5.
Small Methods ; 6(2): e2101046, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935297

RESUMO

Low light absorption and limited carrier lifetime are two limiting factors hampering the further breakthrough of the performance of 2D materials (2DMs)-based photodetectors. This study proposes an ingenious dielectric engineering strategy toward boosting the photosensitivity. Periodic dielectric structures (PDSs), including SiO2 /h-BN, SiO2 /Al2 O3 , and SiO2 /SrTiO3 (STO), are exploited to couple with 2D photosensitive channels (denoted as PDS-2DMs). The responsivity, external quantum efficiency, and detectivity of an optimized SiO2 /STO(300 nm) -WSe2 photodetector reach 89081 A W-1 , 2.7 × 107 %, and 1.8 × 1013 Jones, respectively. These performance metrics are orders of magnitude higher than a pristine WSe2 photodetector, enabling reliable sub-1 pW weak light detection. Based on systematic characterizations and first-principle calculations, such dramatic performance improvement is associated with the promoted direct bandgap transition, reduced exciton binding energy, and PDS-induced periodic intramolecular built-in electric field across the atomically thin channels, which efficiently separates the photoexcited electron-hole pairs. More inspiringly, this strategy is also successfully exploited to 2D WS2 photodetectors, demonstrating broad applicability. As a whole, this work promises an exceptional avenue to ameliorate 2DM photodetectors and opens up a new horizon "dielectric optoelectronics," simultaneously highlighting the role of dielectric environment during analyzing the fundamentals of 2DM devices.

6.
ACS Appl Mater Interfaces ; 11(51): 47992-48001, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31789018

RESUMO

Microcavity is an efficient approach to manufacture colorful semitransparent organic solar cells (ST-OSCs) with high color purity by tailoring the transmission spectrum to narrow peaks. However, in this type of colorful semitransparent devices, high power conversion efficiency (PCE) and high peak transmittance are not yet simultaneously achieved. This paper proposes a new type of microcavity structure to achieve colorful ST-OSCs with both high PCE and high peak transmittance, in which a hybrid Au/Ag electrode is used as a mirror and WO3 is used as a spacer layer. First, it is demonstrated that the hybrid Au/Ag electrode mirror brings about an improvement of 7.7 and 5.5% for PCE and peak transmittance, respectively, when compared with those of the reference devices using the Ag electrode mirror. Specifically, the PCE of the optimized devices reaches the satisfactory value of over 9%, and the peak transmittance is over 25%. This value of PCE is the highest one reported so far for the microcavity-based ST-OSCs with the same peak transmittance. Second, it is demonstrated that the second-order resonance of the microcavity can be used to improve the color purity of green ST-OSCs by narrowing the transmission peak, and the combination of the second-order and third-order resonance can be used to construct colorful ST-OSCs with mixed colors. Thus, a novel approach is developed to tune the color of ST-OSCs, which is based on high-order resonance modes of the microcavity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...