Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(3): 772-788, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37862584

RESUMO

Plants have a family of cyclin-dependent kinase (CDK) inhibitors called interactors/inhibitors of CDK (ICKs) or Kip-related proteins (KRPs). ICK proteins have important functions in cell proliferation, endoreduplication, plant growth, and reproductive development, and their functions depend on the protein levels. However, understanding of how ICK protein levels are regulated is very limited. We fused Arabidopsis ICK sequences to green fluorescent protein (GFP) and determined their effects on the fusion proteins in plants, yeast, and Escherichia coli. The N-terminal regions of ICKs drastically reduced GFP fusion protein levels in Arabidopsis plants. A number of short sequences of 10-20 residues were found to decrease GFP fusion protein levels when fused at the N-terminus or C-terminus. Three of the four short sequences from ICK3 showed a similar function in yeast. Intriguingly, three short sequences from ICK1 and ICK3 caused the degradation of the fusion proteins in E. coli. In addition, computational analyses showed that ICK proteins were mostly disordered and unstructured except for the conserved C-terminal region, suggesting that ICKs are intrinsically disordered proteins. This study has identified a number of short protein-destabilizing sequences, and evidence suggests that some of them may cause protein degradation through structural disorder and instability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Plantas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Quinases Ciclina-Dependentes/metabolismo
2.
Metab Eng Commun ; 12: e00171, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34026531

RESUMO

Docosadienoic acid (DDA, 22:2-13,16) and docosatrienoic acid (DTA, 22:3-13,16,19) are two very long chain polyunsaturated fatty acids (VLCPUFAs) that are recently shown to possess strong anti-inflammatory and antitumor properties. An ELO type elongase (EhELO1) from wild plant Eranthis hyemalis can synthesize the two fatty acids by sequential elongation of linoleic acid and alpha-linolenic acid, respectively. Seed-specific expression of this gene in oilseed crop Brassica carinata produced a considerable amount of DDA and DTA in transgenic seeds. However, these fatty acids were excluded from the sn-2 position of triacylglycerols (TAGs). To improve the production level and nutrition value of the VLCPUFAs in the transgenic oilseed crop, a cytoplasmic lysophosphatidic acid acyltransferase (EhLPAAT2) for the incorporation of the two fatty acids into the sn-2 position of triacylglycerols was identified from E. hyemalis. RT-PCR analysis showed that it was preferentially expressed in developing seeds where EhELO1 was exclusively expressed in E. hyemalis. Seed specific expression of EhLPAAT2 along with EhELO1 in B. carinata resulted in the effective incorporation of DDA and DTA at the sn-2 position of TAGs, thereby increasing the total amount of DDA and DTA in transgenic seeds. To our knowledge, this is the first plant LPAAT that can incorporate VLCPUFAs into TAGs. Improved production of DDA and DTA in the oilseed crop using EhLPAAT2 and EhELO1 provides a real commercial opportunity for high value agriculture products for nutraceutical uses.

3.
Metab Eng ; 49: 192-200, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30149205

RESUMO

Very long chain polyunsaturated fatty acids (VLCPUFAs) are well recognized for their health benefits in humans and animals. Here we report that identification and characterization of a gene (EhELO1) encoding the first functional ELO type elongase (3-ketoacyl-CoA synthase) in higher plants that is involved in the biosynthesis of two VLCPUFAs docosadienoic acid (DDA, 22:2n-6) and docosatrienoic acid (DTA, 22:3n-3) that possess potential health-promoting properties. Functional analysis of the gene in yeast indicated that this novel enzyme could elongate a wide range of polyunsaturated fatty acids with 18-22 carbons and effectively catalyze the biosynthesis of DDA and DTA by the sequential elongations of linoleic acid and alpha-linolenic acid, respectively. Seed-specific expression of this gene in oilseed crop Brassica carinata showed that the transgenic plants produced the level of DDA and DTA at approximately 30% of the total fatty acids in seeds, and the amount of the two fatty acids remained stable over four generations. The oilseed crop producing a high and sustained level of DDA and DTA provides an opportunity for high value agricultural products for nutritional and medical uses.


Assuntos
Brassica , Produtos Agrícolas , Ácidos Graxos Insaturados , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/biossíntese , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Brassica/genética , Brassica/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ranunculaceae/enzimologia , Ranunculaceae/genética
4.
PLoS Genet ; 14(3): e1007230, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29513662

RESUMO

In most plants, the female germline starts with the differentiation of one megaspore mother cell (MMC) in each ovule that produces four megaspores through meiosis, one of which survives to become the functional megaspore (FM). The FM further develops into an embryo sac. Little is known regarding the control of MMC formation to one per ovule and the selective survival of the FM. The ICK/KRPs (interactor/inhibitor of cyclin-dependent kinase (CDK)/Kip-related proteins) are plant CDK inhibitors and cell cycle regulators. Here we report that in the ovules of Arabidopsis mutant with all seven ICK/KRP genes inactivated, supernumerary MMCs, FMs and embryo sacs were formed and the two embryo sacs could be fertilized to form two embryos with separate endosperm compartments. Twin seedlings were observed in about 2% seeds. Further, in the mutant ovules the number and position of surviving megaspores from one MMC were variable, indicating that the positional signal for determining the survival of megaspore was affected. Strikingly, ICK4 fusion protein with yellow fluorescence protein was strongly present in the degenerative megaspores but absent in the FM, suggesting an important role of ICKs in the degeneration of non-functional megaspores. The absence of or much weaker phenotypes in lower orders of mutants and complementation of the septuple mutant by ICK4 or ICK7 indicate that multiple ICK/KRPs function redundantly in restricting the formation of more than one MMC and in the selective survival of FM, which are critical to ensure the development of one embryo sac and one embryo per ovule.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Óvulo Vegetal/citologia , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Luminescentes/genética , Mutação , Óvulo Vegetal/fisiologia , Células Vegetais/fisiologia , Plantas Geneticamente Modificadas , Recombinases Rec A/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
5.
Plant J ; 87(6): 617-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27233081

RESUMO

The ICK/KRP family of cyclin-dependent kinase (CDK) inhibitors modulates the activity of plant CDKs through protein binding. Previous work has shown that changing the levels of ICK/KRP proteins by overexpression or downregulation affects cell proliferation and plant growth, and also that the ubiquitin proteasome system is involved in degradation of ICK/KRPs. We show in this study that the region encompassing amino acids 21 to 40 is critical for ICK1 levels in both Arabidopsis and yeast. To determine how degradation of ICK1 is controlled, we analyzed the accumulation of hemagglutinin (HA) epitope-tagged ICK1 proteins in yeast mutants defective for two ubiquitin E3 ligases. The highest level of HA-ICK1 protein was observed when both the N-terminal 1-40 sequence was removed and the SCF (SKP1-Cullin1-F-box complex) function disrupted, suggesting the involvement of both SCF-dependent and SCF-independent mechanisms in the degradation of ICK1 in yeast. A short motif consisting of residues 21-30 is sufficient to render green fluorescent protein (GFP) unstable in plants and had a similar effect in plants regardless of whether it was fused to the N-terminus or C-terminus of GFP. Furthermore, results from a yeast ubiquitin receptor mutant rpn10Δ indicate that protein ubiquitination is not critical in the degradation of GFP-ICK1(1-40) in yeast. These results thus identify a protein-destabilizing sequence motif that does not contain a typical ubiquitination residue, suggesting that it probably functions through an SCF-independent mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Culina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Leupeptinas/farmacologia , Mutação , Plantas Geneticamente Modificadas , Estabilidade Proteica , Temperatura , Ubiquitina/metabolismo , Leveduras/efeitos dos fármacos , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...