Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 78: 103457, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833814

RESUMO

Truncus arteriosus (TA) is a congenital heart defect where one main blood vessel emerges from the heart, instead of individual aorta and pulmonary artreries. Peripheral mononuclear cells (PBMCs) of a male infant with TA were reporogrammed using Sendai virus. The resultant iPSC line (NCHi015-A) displayed normal colony formation, expressed pluripotency markers, and differentiated into cells from three germ layers. NCHi015-A was matched to the patient's genetic profile, had normal karyotype, retained genetic variants in KMT2D and NOTCH1, and tested negative for reprogramming transgene. This iPSC line can be used for studying congenital heart defects associated with genetic variants in KMT2D and NOTCH1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptor Notch1 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Receptor Notch1/genética , Receptor Notch1/metabolismo , Tronco Arterial , Proteínas de Ligação a DNA/genética , Linhagem Celular , Heterozigoto , Diferenciação Celular , Proteínas de Neoplasias
3.
Stem Cell Res ; 74: 103281, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38118204

RESUMO

NOTCH1 signaling is crucial for cardiovascular development. Numerous studies have identified heterozygous NOTCH1 loss of function and missense variants associated with a spectrum of congenital heart diseases (CHD). We generated induced pluripotent stem cells (iPSC) from a healthy individual to develop a model for NOTCH1+/- iPSC to study the molecular pathogenesis of CHD. NOTCH1+/-iPSC (NCHi014-A) have normal morphology and karyotype, are identical to the parental cell line, express pluripotency markers and have the ability to differentiate to the three germ layers. NOTCH1+/- iPSC can be used as a tool to study the cellular and molecular mechanisms underlying NOTCH1-associated human CHD.


Assuntos
Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Linhagem Celular , Cardiopatias Congênitas/metabolismo , Mutação de Sentido Incorreto , Receptor Notch1/genética , Receptor Notch1/metabolismo
4.
Stem Cell Res ; 72: 103213, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37774637

RESUMO

Alagille syndrome (ALGS) is a multisystem disease with high variability in clinical features. ALGS is predominantly caused by pathogenic variants in the Notch ligand JAG1. An iPSC line, NCHi011-A, was generated from a ALGS patient with complex cardiac phenotypes consisting of pulmonic valve and branch pulmonary artery stenosis. NCHi011-A is heterozygous for a single base duplication causing a frameshift in the JAG1 gene. This iPSC line demonstrates normal cellular morphology, expression of pluripotency markers, trilineage differentiation potential, and identity to the source patient. NCHi011-A provides a resource for modeling ALGS and investigating the role of Notch signaling in the disease.


Assuntos
Síndrome de Alagille , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Adulto Jovem , Adulto , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Coração , Diferenciação Celular
5.
Stem Cell Res ; 71: 103177, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549562

RESUMO

Alagille syndrome (ALGS) is an autosomal dominant disease affecting the liver, heart and other organs with high variability. About 95% of ALGS cases are associated with pathogenic variants in JAG1, encoding the Jagged1 ligand that binds to Notch receptors. The iPSC line NCHi012-A was derived from an ALGS patient with cholestatic liver disease and mild pulmonary stenosis, who is heterozygous for a 2 bp deletion in the JAG1 coding sequence. We report here an initial characterization of NCHi012-A to evaluate its morphology, pluripotency, differentiation potential, genotype, karyotype and identity to the source patient.


Assuntos
Síndrome de Alagille , Células-Tronco Pluripotentes Induzidas , Humanos , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores Notch/metabolismo , Coração , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo
6.
Stem Cell Res ; 71: 103155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392705

RESUMO

Down syndrome is a genetic anomaly that manifests when there is a mistake during cell division, resulting in an additional chromosome 21. Down syndrome can impact cognitive capabilities and physical development, giving rise to diverse developmental disparities and an elevated likelihood of certain health issues. The iPSC line NCHi010-A was generated from peripheral blood mononuclear cells of a 6-year-old female with Down syndrome and without congenital heart disease using Sendai virus reprogramming. NCHi010-A displayed a morphology of pluripotent stem cells, expressed pluripotency markers, retained trisomy 21 karyotype, and demonstrated potential to differentiate into cells representative of the three germ layers.


Assuntos
Síndrome de Down , Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Criança , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprogramação Celular , Síndrome de Down/metabolismo , Diferenciação Celular , Leucócitos Mononucleares/metabolismo , Linhagem Celular , Vetores Genéticos , Fatores de Transcrição/genética , Cardiopatias Congênitas/genética
7.
Stem Cell Res ; 71: 103156, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393719

RESUMO

Down syndrome is a congenital disorder resulting from an extra full or partial chromosome 21, which is characterized by a spectrum of systemic developmental abnormalities, including those affecting the cardiovascular system. Here, we generated an iPSC line from peripheral blood mononuclear cells of a male adolescent with Down syndrome-associated congenital heart defects through Sendai virus-mediated transfection of 4 Yamanaka factors. This line exhibited normal morphology, expressed pluripotency markers, trisomy 21 karyotype, and could be differentiated into three germ layers. This iPSC line can be used for studying cellular and developmental etiologies of congenital heart defects induced by aneuploidy of chromosome 21.


Assuntos
Síndrome de Down , Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Adolescente , Reprogramação Celular , Síndrome de Down/complicações , Leucócitos Mononucleares , Linhagem Celular , Vetores Genéticos , Fatores de Transcrição/genética , Diferenciação Celular , Cardiopatias Congênitas/genética
8.
Stem Cell Res ; 66: 103013, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599283

RESUMO

Hypoplastic left heart syndrome (HLHS) is a congenital heart malformation clinically characterized by an underdeveloped left ventricle, mitral or aortic valve stenosis or atresia, and narrowed ascending aorta. Although genetic etiology of HLHS is heterogenous, recurrent NOTCH1 variants have been associated with this defect. We report generation of an iPSC line derived from a female with HLHS with a heterozygous missense NOTCH1 (c.2058G > A; p.Gly661Ser) mutation within the conserved EGF-like repeat 17. This iPSC line exhibited typical cellular morphology, normal karyotype, high expression of pluripotent markers, and trilineage differentiation potential; and can be leveraged to dissect the complex NOTCH1-mediated HLHS disease mechanism.


Assuntos
Cardiopatias Congênitas , Síndrome do Coração Esquerdo Hipoplásico , Células-Tronco Pluripotentes Induzidas , Humanos , Feminino , Síndrome do Coração Esquerdo Hipoplásico/genética , Síndrome do Coração Esquerdo Hipoplásico/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiopatias Congênitas/metabolismo , Mutação/genética , Heterozigoto , Receptor Notch1/genética , Receptor Notch1/metabolismo
9.
Circ Res ; 132(2): 187-204, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36583388

RESUMO

BACKGROUND: NOTCH1 pathogenic variants are implicated in multiple types of congenital heart defects including hypoplastic left heart syndrome, where the left ventricle is underdeveloped. It is unknown how NOTCH1 regulates human cardiac cell lineage determination and cardiomyocyte proliferation. In addition, mechanisms by which NOTCH1 pathogenic variants lead to ventricular hypoplasia in hypoplastic left heart syndrome remain elusive. METHODS: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 genome editing was utilized to delete NOTCH1 in human induced pluripotent stem cells. Cardiac differentiation was carried out by sequential modulation of WNT signaling, and NOTCH1 knockout and wild-type differentiating cells were collected at day 0, 2, 5, 10, 14, and 30 for single-cell RNA-seq. RESULTS: Human NOTCH1 knockout induced pluripotent stem cells are able to generate functional cardiomyocytes and endothelial cells, suggesting that NOTCH1 is not required for mesoderm differentiation and cardiovascular development in vitro. However, disruption of NOTCH1 blocks human ventricular-like cardiomyocyte differentiation but promotes atrial-like cardiomyocyte generation through shortening the action potential duration. NOTCH1 deficiency leads to defective proliferation of early human cardiomyocytes, and transcriptomic analysis indicates that pathways involved in cell cycle progression and mitosis are downregulated in NOTCH1 knockout cardiomyocytes. Single-cell transcriptomic analysis reveals abnormal cell lineage determination of cardiac mesoderm, which is manifested by the biased differentiation toward epicardial and second heart field progenitors at the expense of first heart field progenitors in NOTCH1 knockout cell populations. CONCLUSIONS: NOTCH1 is essential for human ventricular-like cardiomyocyte differentiation and proliferation through balancing cell fate determination of cardiac mesoderm and modulating cell cycle progression. Because first heart field progenitors primarily contribute to the left ventricle, we speculate that pathogenic NOTCH1 variants lead to biased differentiation of first heart field progenitors, blocked ventricular-like cardiomyocyte differentiation, and defective cardiomyocyte proliferation, which collaboratively contribute to left ventricular hypoplasia in hypoplastic left heart syndrome.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Células-Tronco Pluripotentes Induzidas , Humanos , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/fisiologia , Miócitos Cardíacos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
10.
Stem Cell Res ; 65: 102958, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343514

RESUMO

Epstein-Barr virus (EBV) immortalized lymphoblastoid cell lines (LCLs) are widely used for banking. This bioresource could be leveraged for creating human iPSC lines to model diseases including CHD. We generated an LCL-derived iPSC line (NCHi001-A) from a patient with congenital aortic valve stenosis. NCHi001-A was EBV and transgenes free, exhibited stem cell-like morphology, expressed pluripotency markers, has a normal karyotype, and could be differentiated into cells of three germ layers in vitro. Relationship inference via a microarray-based analysis showed NCHi001-A is identical to the parental cell line. NCHi001-A can be used for disease modeling, drug discovery, and cell therapy development.


Assuntos
Infecções por Vírus Epstein-Barr , Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Humanos , Herpesvirus Humano 4 , Cardiopatias Congênitas/genética
11.
Stem Cell Res ; 64: 102893, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987120

RESUMO

Pulmonary atresia with intact ventricular septum (PA-IVS) is a rare congenital heart defect defined by membranous or muscular atresia of the right ventricular outflow tract where patients display varying degrees of hypoplasia of the right ventricle. This condition results in cyanosis due to an inability of blood to flow from the right ventricle to the pulmonary arteries, thus requiring immediate surgical intervention after birth. An iPSC line was generated from peripheral blood mononuclear cells of a 11-year-old male patient diagnosed with PA-IVS through Sendai virus-mediated reprogramming. This disease-specific iPSC line was characterized by immunocytochemistry, STR analysis, karyotype analysis, and mycoplasma testing.


Assuntos
Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Atresia Pulmonar , Masculino , Humanos , Criança , Leucócitos Mononucleares , Atresia Pulmonar/cirurgia
12.
Stem Cell Res ; 64: 102892, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987121

RESUMO

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect characterized by underdeveloped structures on the left side of the heart, including hypoplasia of the left ventricle and stenosis or atresia of the aortic and mitral valves. Here, we generated an iPSC line from the peripheral blood mononuclear cells of a male patient with HLHS through Sendai virus-mediated transfection of 4 Yamanaka factors. This iPSC line exhibited normal morphology, expressed pluripotency markers, had a normal karyotype, and could differentiate into cells of three germ layers. This iPSC line can be used for studying cellular and developmental etiologies of HLHS.


Assuntos
Cardiopatias Congênitas , Síndrome do Coração Esquerdo Hipoplásico , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Leucócitos Mononucleares , Ventrículos do Coração
13.
Methods Mol Biol ; 2549: 335-344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34611813

RESUMO

The generation of cardiomyocytes (CMs) and endothelial cells (ECs) from human induced pluripotent stem cells (iPSCs) allows for precise modeling of cardiovascular disease using clinically relevant and patient-specific cells. Differentiation of human iPSCs into cardiomyocytes (iPSC-CMs) and endothelial cells (iPSC-ECs) is governed by small molecules that regulate the WNT signaling pathway. Here we outline the detailed steps to generate iPSC-CMs and iPSC-ECs through small molecule-mediated monolayer differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Células Endoteliais , Humanos , Miócitos Cardíacos , Via de Sinalização Wnt
14.
J Vis Exp ; (168)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33645570

RESUMO

Generating patient-specific cardiomyocytes from a single blood draw has attracted tremendous interest in precision medicine on cardiovascular disease. Cardiac differentiation from human induced pluripotent stem cells (iPSCs) is modulated by defined signaling pathways that are essential for embryonic heart development. Numerous cardiac differentiation methods on 2-D and 3-D platforms have been developed with various efficiencies and cardiomyocyte yield. This has puzzled investigators outside the field as the variety of these methods can be difficult to follow. Here we present a comprehensive protocol that elaborates robust generation and expansion of patient-specific cardiomyocytes from peripheral blood mononuclear cells (PBMCs). We first describe a high-efficiency iPSC reprogramming protocol from a patient's blood sample using non-integration Sendai virus vectors. We then detail a small molecule-mediated monolayer differentiation method that can robustly produce beating cardiomyocytes from most human iPSC lines. In addition, a scalable cardiomyocyte expansion protocol is introduced using a small molecule (CHIR99021) that could rapidly expand patient-derived cardiomyocytes for industrial- and clinical-grade applications. At the end, detailed protocols for molecular identification and electrophysiological characterization of these iPSC-CMs are depicted. We expect this protocol to be pragmatic for beginners with limited knowledge on cardiovascular development and stem cell biology.


Assuntos
Técnicas de Cultura de Células/métodos , Leucócitos Mononucleares/citologia , Miócitos Cardíacos/citologia , Diferenciação Celular , Proliferação de Células , Reprogramação Celular , Citometria de Fluxo , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Patch-Clamp , Proteínas Wnt/metabolismo
15.
Front Cell Dev Biol ; 8: 594226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178704

RESUMO

In the past few decades, cardiac regeneration has been the central target for restoring the injured heart. In mammals, cardiomyocytes are terminally differentiated and rarely divide during adulthood. Embryonic and fetal cardiomyocytes undergo robust proliferation to form mature heart chambers in order to accommodate the increased workload of a systemic circulation. In contrast, postnatal cardiomyocytes stop dividing and initiate hypertrophic growth by increasing the size of the cardiomyocyte when exposed to increased workload. Extracellular and intracellular signaling pathways control embryonic cardiomyocyte proliferation and postnatal cardiac hypertrophy. Harnessing these pathways could be the future focus for stimulating endogenous cardiac regeneration in response to various pathological stressors. Meanwhile, patient-specific cardiomyocytes derived from autologous induced pluripotent stem cells (iPSCs) could become the major exogenous sources for replenishing the damaged myocardium. Human iPSC-derived cardiomyocytes (iPSC-CMs) are relatively immature and have the potential to increase the population of cells that advance to physiological hypertrophy in the presence of extracellular stimuli. In this review, we discuss how cardiac proliferation and maturation are regulated during embryonic development and postnatal growth, and explore how patient iPSC-CMs could serve as the future seed cells for cardiac cell replacement therapy.

16.
BMC Cancer ; 18(1): 724, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980194

RESUMO

BACKGROUND: Multiple myeloma (MM) patients with t(14;20) have a poor prognosis and their outcome has not improved following the introduction of bortezomib (Bzb). The mechanism underlying the resistance to proteasome inhibitors (PIs) for this subset of patients is unknown. METHODS: IC50 of Bzb and carfilzomib (CFZ) in human myeloma cell lines (HMCLs) were established by MTT assay. Gene Expression profile (GEP) analysis was used to determine gene expression in primary myeloma cells. Immunoblotting analysis was performed for MAFb and caspase family proteins. Immunofluorescence staining was used to detect the location of MAFb protein in MM cells. Lentiviral infections were used to knock-down MAFb expression in two lines. Apoptosis detection by flow cytometry and western blot analysis was performed to determine the molecular mechanism MAFb confers resistance to proteasome inhibitors. RESULTS: We found high levels of MAFb protein in cell lines with t(14;20), in one line with t(6;20), in one with Igλ insertion into MAFb locus, and in primary plasma cells from MM patients with t(14;20). High MAFb protein levels correlated with higher IC50s of PIs in MM cells. Inhibition of GSK3ß activity or treatment with Bzb or CFZ prevented MAFb protein degradation without affecting the corresponding mRNA level indicating a role for GSK3 and proteasome inhibitors in regulation of MAFb stability. Silencing MAFb restored sensitivity to Bzb and CFZ, and enhanced PIs-induced apoptosis and activation of caspase-3, - 8, - 9, PARP and lamin A/C suggesting that high expression of MAFb protein leads to insensitivity to proteasome inhibitors. CONCLUSION: These results highlight the role of post-translational modification of MAFb in maintaining its protein level, and identify a mechanism by which proteasome inhibitors induced stabilization of MAFb confers resistance to proteasome inhibitors, and provide a rationale for the development of targeted therapeutic strategies for this subset of patients.


Assuntos
Fator de Transcrição MafB/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Fator de Transcrição MafB/análise , Fator de Transcrição MafB/genética , Mieloma Múltiplo/patologia
17.
Int J Biol Sci ; 12(12): 1488-1499, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994513

RESUMO

We have previously reported that depletion of LIS1, a key regulator of microtubules and cytoplasmic dynein motor complex, in osteoclast precursor cells by shRNAs attenuates osteoclastogenesis in vitro. However, the underlying mechanisms remain unclear. In this study, we show that conditional deletion of LIS1 in osteoclast progenitors in mice led to increased bone mass and decreased osteoclast number on trabecular bone. In vitro mechanistic studies revealed that loss of LIS1 had little effects on cell cycle progression but accelerated apoptosis of osteoclast precursor cells. Furthermore, deletion of LIS1 prevented prolonged activation of ERK by M-CSF and aberrantly enhanced prolonged JNK activation stimulated by RANKL. Finally, lack of LIS1 abrogated M-CSF and RANKL induced CDC42 activation and retroviral transduction of a constitutively active form of CDC42 partially rescued osteoclastogenesis in LIS1-deficient macrophages. Therefore, these data identify a key role of LIS1 in regulation of cell survival of osteoclast progenitors by modulating M-CSF and RANKL induced signaling pathways and CDC42 activation.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/fisiologia , Ligante RANK/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Western Blotting , Células da Medula Óssea/citologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Monócitos/citologia , Monócitos/metabolismo , Osteogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fosfatase Ácida Resistente a Tartarato/metabolismo , Microtomografia por Raio-X
18.
Blood ; 128(25): 2919-2930, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27793878

RESUMO

Multiple myeloma (MM) patients with the t(14;16) translocation have a poor prognosis, and unlike other molecular subgroups, their outcome has not improved with the introduction of bortezomib (Bzb). The mechanism underlying innate resistance of MM to Bzb is unknown. In the present study, we have investigated how MAF overexpression impacts resistance to proteasome inhibitor (PI) therapy (Bzb and carfilzomib). High levels of MAF protein were found in t(14;16) cell lines; cell lines from the t(4;14) subgroup had intermediate levels, whereas cell lines from the other subgroups had low levels. High expression of MAF protein in t(14;16) was associated with significantly higher PI half-maximum inhibitory concentration values compared with other molecular subgroups. PI exposure abrogated glycogen synthase kinase 3ß (GSK3ß)-mediated degradation of MAF protein, resulting in increased MAF protein stability and PI resistance. Subsequent studies using loss-of-function and gain-of-function models showed that silencing MAF led to increased sensitivity to PIs, enhanced apoptosis, and activation of caspase-3, -7, -8, -9, poly (ADP-ribose) polymerase, and lamin A/C. In contrast, overexpression of MAF resulted in increased resistance to PIs and reduced apoptosis. These results define the role of MAF and GSK3 in the resistance of t(14;16) MM to PIs and identifies a novel mechanism by which MAF protein levels are regulated by PIs, which in turn confers resistance to PIs.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunidade Inata , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Inibidores de Proteassoma/uso terapêutico , Proteínas Proto-Oncogênicas c-maf/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 16/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Laminas/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Prognóstico , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-maf/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Translocação Genética
19.
JCI Insight ; 1(17): e86330, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27777970

RESUMO

Mutations of the Plekhm1 gene in humans and rats cause osteopetrosis, an inherited bone disease characterized by diminished bone resorption by osteoclasts. PLEKHM1 binds to RAB7 and is critical for lysosome trafficking. However, the molecular mechanisms by which PLEKHM1 regulates lysosomal pathways remain unknown. Here, we generated germline and conditional Plekhm1-deficient mice. These mice displayed no overt abnormalities in major organs, except for an increase in trabecular bone mass. Furthermore, loss of PLEKHM1 abrogated the peripheral distribution of lysosomes and bone resorption in osteoclasts. Mechanistically, we indicated that DEF8 interacts with PLEKHM1 and promotes its binding to RAB7, whereas the binding of FAM98A and NDEL1 with PLEKHM1 connects lysosomes to microtubules. Importantly, suppression of these proteins results in lysosome positioning and bone resorption defects similar to those of Plekhm1-null osteoclasts. Thus, PLHKEM1, DEF8, FAM98A, and NDEL1 constitute a molecular complex that regulates lysosome positioning and secretion through RAB7.


Assuntos
Reabsorção Óssea , Lisossomos/fisiologia , Osteoclastos/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Relacionadas à Autofagia , Diferenciação Celular , Células Cultivadas , Endossomos , Deleção de Genes , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte Vesicular/genética , proteínas de unión al GTP Rab7
20.
Calcif Tissue Int ; 96(5): 465-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712254

RESUMO

The Notch signaling pathway plays a crucial role in skeletal development and homeostasis by regulating the proliferation and differentiation of osteoblasts and osteoclasts. However, the molecular mechanisms modulating the level and activity of Notch receptors in bone cells remain unknown. In this study, we uncovered that LNX2, an E3 ubiquitin ligase and Notch inhibitor Numb binding protein, was up-regulated during osteoclast differentiation. Knocking-down LNX2 expression in bone marrow macrophages by lentivirus-mediated short hairpin RNAs markedly inhibited osteoclast formation. Decreased LNX2 expression attenuated macrophage colony-stimulating factor (M-CSF)-induced ERK and AKT activation and RANKL-stimulated activation of NF-κB and JNK pathways; therefore, accelerated osteoclast apoptosis. Additionally, loss of LNX2 led to an increased accumulation of Numb, which promoted the degradation of Notch and caused a reduction of the expression of the Notch downstream target gene, Hes1. We conclude that LNX2 regulates M-CSF/RANKL and the Notch signaling pathways during osteoclastogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Osteoclastos/citologia , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células , Imunofluorescência , Immunoblotting , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor Notch2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA