Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 281: 116651, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959790

RESUMO

Betamethasone has been extensively used in medicine in recent years and poses potential hazards to aquatic organisms. This study investigated the reproductive toxic effects of betamethasone exposure in fish, employing female Japanese medaka (Oryzias latipes) as a model. Betamethasone exposure at environmentally relevant concentrations (0, 20, 200, and 2000 ng/L) for a period of 15 weeks resulted in its high accumulation in the ovary, leading to abnormal oogenesis in female Japanese medaka. The production of gonadotropins (LH and FSH) in the pituitary gland was inhibited, and sex steroid biosynthesis in the ovary was significantly influenced at the transcriptional level. The imbalance of androgens and estrogens resulted in a decrease in the E2/T ratio and hepatic VTG synthesis, and the suppression of estrogen receptor signaling was also induced. Furthermore, betamethasone exposure delayed spawning and reduced fertility in the F0 generation, and had detrimental effects on the fertilization rate and hatchability of the F1 generation. Our results showed that environmental betamethasone had the potential to adversely affect female fertility and steroid hormone dynamics in fish.

2.
J Ophthalmol ; 2024: 3181569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812725

RESUMO

Purpose: The reference range for the preoperative anterior chamber angle width for ICL surgery is unclear. Our objective was to assess the clinical effect and the range of anterior chamber angle width of posterior-chamber implantable collamer lens V4c (ICL V4c) implantation in patients with anterior chamber depth (ACD) < 2.8 mm. Methods: Patients who underwent ICL V4c implantation with shallow ACD were included in this retrospective study. The patients' uncorrected and corrected distance visual acuity, angle of trabecular-iris (TIA), angle-opening distance (AOD500), trabecular-iris space area (TISA500), corneal endothelial cell density, vault, retinal nerve fiber layer thickness, intraocular pressure, visual field, and complications were analyzed. Results: Forty-one patients (68 eyes) completed at least 12 months of follow-up (median follow-up, 30 months). The effectiveness and safety indices were 1.09 ± 0.13 and 1.04 ± 0.21, respectively. The preoperative TIA values on the nasal and temporal sides were 39.78 ± 7.68 degree (range, 25.8-65.1 degree) and 41.54 ± 8.03 degree (range, 28.5-63.00 degree). Forty-seven eyes had uncorrected distance visual acuity ≥1.0, and 55 had corrected distance visual acuity ≥1.0 at the last follow-up visit. The TIA, AOD500, and TISA500 on the nasal and temporal sides were significantly reduced compared to those before surgery (all P < 0.01); no eye had an angle closure or elevated intraocular pressure. The ICL V4c vault was 290.88 ± 153.36 µm (range, 60.0-880.0 µm). No severe complications occurred in any patient. Conclusions: In patients with myopia with shallow ACD (2.55-2.79 mm), a preoperative TIA >25.8° is safe and effective for a relatively long time after surgery; however, an extended long-term close follow-up is needed.

3.
Angle Orthod ; 94(1): 68-74, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839805

RESUMO

OBJECTIVES: To determine the optimal settings for reconstructing the buccal surfaces of different tooth types using the virtual bracket removal (VBR) technique. MATERIALS AND METHODS: Ten postbonded digital dentitions (with their original prebonded dentitions) were enrolled. The VBR protocol was carried out under five settings from three commonly used computer-aided design (CAD) systems: OrthoAnalyzer (O); Meshmixer (M); and curvature (G2), tangent (G1), and flat (G0) from Geomagic Studio. The root mean squares (RMSs) between the reconstructed and prebonded dentitions were calculated for each tooth and compared with the clinically acceptable limit (CAL) of 0.10 mm. RESULTS: The overall prevalences of RMSs below the CAL were 66.80%, 70.08%, 62.30%, 94.83%, and 56.15% under O, M, G2, G1, and G0, respectively. For the upper dentition, the mean RMSs were significantly lower than the CAL for all tooth types under G1 and upper incisors and canines under M and G2. For the lower dentition, the mean RMSs were significantly lower than the CAL for all tooth types under G1 and lower incisors and canines under M, G2, and G0 (all P < .05). Additionally, the mean RMSs of all teeth under G1 were significantly lower than those under the other settings (all P < .001). CONCLUSIONS: The optimal settings varied among different tooth types. G1 performed best for most tooth types compared to the other four settings.


Assuntos
Incisivo , Raiz Dentária , Desenho Assistido por Computador
4.
BMC Oral Health ; 23(1): 630, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667286

RESUMO

BACKGROUND: Three-dimensional(3D) reconstruction technology is a method of transforming real goals into mathematical models consistent with computer logic expressions and has been widely used in dentistry, but the lack of review and summary leads to confusion and misinterpretation of information. The purpose of this review is to provide the first comprehensive link and scientific analysis of 3D reconstruction technology and dentistry to bridge the information bias between these two disciplines. METHODS: The IEEE Xplore and PubMed databases were used for rigorous searches based on specific inclusion and exclusion criteria, supplemented by Google Academic as a complementary tool to retrieve all literature up to February 2023. We conducted a narrative review focusing on the empirical findings of the application of 3D reconstruction technology to dentistry. RESULTS: We classify the technologies applied to dentistry according to their principles and summarize the different characteristics of each category, as well as the different application scenarios determined by these characteristics of each technique. In addition, we indicate their development prospects and worthy research directions in the field of dentistry, from individual techniques to the overall discipline of 3D reconstruction technology, respectively. CONCLUSIONS: Researchers and clinicians should make different decisions on the choice of 3D reconstruction technology based on different objectives. The main trend in the future development of 3D reconstruction technology is the joint application of technology.


Assuntos
Imageamento Tridimensional , Pesquisadores , Humanos , Bases de Dados Factuais , Tecnologia , Odontologia
5.
Invest Ophthalmol Vis Sci ; 64(5): 7, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145604

RESUMO

Purpose: Microglial clearance of axonal debris is an essential response for management of traumatic optic neuropathy. Inadequate removal of axonal debris leads to increased inflammation and axonal degeneration after traumatic optic neuropathy. The present study investigated the role of CD11b (Itgam) in axonal debris clearance and axonal degeneration. Methods: Western blot and immunofluorescence were used to detect CD11b expression in the mouse optic nerve crush (ONC) model. Bioinformatics analysis predicted the possible role of CD11b. Cholera toxin subunit B (CTB) and zymosan were used to assay phagocytosis by microglia in vivo and in vitro, respectively. CTB was also used to label functionally intact axons after ONC. Results: CD11b is abundantly expressed after ONC and participates in phagocytosis. Microglia from Itgam-/- mice exhibited more significant phagocytosis of axonal debris than wild-type microglia. In vitro experiments confirmed that the CD11b gene defect in M2 microglia leads to increased insulin-like growth factor-1 secretion and thus promotes phagocytosis. Lastly, following ONC, Itgam-/- mice exhibited elevated expression of neurofilament heavy peptide and Tuj1, along with more intact CTB-labeled axons when compared with wild-type mice. Moreover, the inhibition of insulin-like growth factor-1 decreased CTB labeling in Itgam-/- mice after injury. Conclusions: CD11b limits microglial phagocytosis of axonal debris in traumatic optic neuropathy, as demonstrated by increased phagocytosis with CD11b knockout. The inhibition of CD11b activity may be a novel approach to promote central nerve repair.


Assuntos
Microglia , Traumatismos do Nervo Óptico , Camundongos , Animais , Microglia/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Knockout , Axônios/metabolismo , Compressão Nervosa , Camundongos Endogâmicos C57BL
6.
Gene Ther ; 30(1-2): 75-87, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132206

RESUMO

Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Gliose , Camundongos , Animais , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Neurônios/metabolismo , Lesões Encefálicas Traumáticas/terapia , Encéfalo/metabolismo , Regeneração
7.
Invest Ophthalmol Vis Sci ; 63(6): 21, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35737379

RESUMO

Purpose: Abnormal angiogenesis is a defining feature in a couple of ocular neovascular diseases. The application of anti-VEGFA therapy has achieved certain benefits in the clinic, accompanying side effects and poor responsiveness in many patients. The present study investigated the role of irisin in retinal neovascularization. Methods: Western blot and quantitative PCR were used to determine irisin expression in the oxygen-induced retinopathy mice model. The pathological angiogenesis and inflammation index were examined after irisin administration. Primary retinal astrocytes were cultured and analyzed for VEGFA expression in vitro. Astrocyte-conditioned medium was collected for transwell assay and tube formation assay in human microvascular endothelial cells-1. Results: Irisin was downregulated in the oxygen-induced retinopathy mice retinae. Additional irisin attenuated pathological angiogenesis, inflammation, and apoptosis in vivo. In vitro, irisin decreased astrocyte VEGFA production, and the conditioned medium suppressed human microvascular endothelial cells-1 migration. Last, irisin inhibited hypoxia-inducible factor-2α, nuclear factor-κB, and pNF-κB (Phospho-Nuclear Factor-κB) expression. Conclusions: Irisin mitigates retinal pathological angiogenesis.Chinese Abstract.


Assuntos
Oxigênio , Neovascularização Retiniana , Animais , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibronectinas , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Neovascularização Patológica/tratamento farmacológico , Oxigênio/toxicidade , Neovascularização Retiniana/metabolismo
8.
Front Aging Neurosci ; 13: 721474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539383

RESUMO

Tau hyperphosphorylation is a characteristic alteration present in a range of neurological conditions, such as traumatic brain injury (TBI) and neurodegenerative diseases. Treatments targeting high-mobility group box protein 1 (HMGB1) induce neuroprotective effects in these neuropathologic conditions. However, little is known about the interactions between hyperphosphorylated tau and HMGB1 in neuroinflammation. We established a model of TBI with controlled cortical impacts (CCIs) and a tau hyperphosphorylation model by injecting the virus encoding human P301S tau in mice, and immunofluorescence, western blotting analysis, and behavioral tests were performed to clarify the interaction between phosphorylated tau (p-tau) and HMGB1 levels. We demonstrated that p-tau and HMGB1 were elevated in the spatial memory-related brain regions in mice with TBI and tau-overexpression. Animals with tau-overexpression also had significantly increased nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation, which manifested as increases in apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), activating caspase-1 and interleukin 1 beta (IL-1ß) levels. In addition, NLRP3-/- mice and the HMGB1 inhibitor, glycyrrhizin, were used to explore therapeutic strategies for diseases with p-tau overexpression. Compared with wild-type (WT) mice with tau-overexpression, downregulation of p-tau and HMGB1 was observed in NLRP3-/- mice, indicating that HMGB1 alterations were NLRP3-dependent. Moreover, treatment with glycyrrhizin at a late stage markedly reduced p-tau levels and improved performance in the Y- and T-mazes and the ability of tau-overexpressing mice to build nests, which revealed improvements in spatial memory and advanced hippocampal function. The findings identified that p-tau has a triggering role in the modulation of neuroinflammation and spatial memory in an NLRP3-dependent manner, and suggest that treatment with HMGB1 inhibitors may be a better therapeutic strategy for tauopathies.

9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(4): 494-498, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32691556

RESUMO

OBJECTIVE: To prepare the specific monoclonal antibody against the N-terminal specific epitope peptide of anti-mullerian hormone (AMH) and to identify its specificity. METHODS: Using bioinformatics analysis software to predict the specific peptide fragment of AMH. Then synthesized four antigenic epitope peptide segments of mature N-terminal region of AMH as the screening target antigen. Synthesized AMH wholegene.Using the prokaryotic expression system to abtain recombinant AMH protein. Immunized BALB/c mice with the recombinant AMH, and prepared mouse spleen cells for fusing with SP/20 cells. Preparation of AMH monoclonal antibody by hybridoma technology. The monoclonal antibodies against AMH were screened by using four N-terminal epitope peptides (1: 439-451 RGRDPRGPGRAQ, 2: 273-285 PPRPSAELEESPP, 3: 42-54 DLDWPPGSPQEPL, 4: 494-506 WPQSDRNPRYGNH) as antigens, and indirect ELISA and Western blot were used to identify the antigen binding characteristics of the selected monoclonal antibodies. RESULTS: Two hybridoma cell lines with stable anti-AMH-1 and anti-AMH-2 antibody activities were screened. The two antibodies were named anti-AMH-1 and anti-AMH-2 respectively. The antibody titers were 1∶12 000 and 1∶1 600 after purification. Western blot confirmed that the two McAbs recognized different antigens. Anti-AMH-1 could not only recognize the N-terminal 439-451 epitope peptide of AMH, but also recognize the amino acid sequence of recombinant AMH, as well as the ovarian tissue. Anti-AMH-2 could recognize recombinant AMH and ovarian tissue. CONCLUSION: Two monoclonal antibodies against N-terminal specific epitopes of human AMH were successfully constructed.


Assuntos
Hormônio Antimülleriano , Anticorpos Monoclonais , Epitopos , Animais , Hormônio Antimülleriano/imunologia , Anticorpos Monoclonais/metabolismo , Biologia Computacional , Epitopos/imunologia , Humanos , Hibridomas/imunologia , Camundongos , Camundongos Endogâmicos BALB C
10.
J Neuroinflammation ; 16(1): 235, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771656

RESUMO

BACKGROUND: Vacuolar sorting protein 35 (VPS35), a critical component of retromer, is essential for selective endosome-to-Golgi retrieval of membrane proteins. It is highly expressed in microglial cells, in addition to neurons. We have previously demonstrated microglial VPS35's functions in preventing hippocampal, but not cortical, microglial activation, and in promoting adult hippocampal neurogenesis. However, microglial VPS35's role in the cortex in response to ischemic stroke remains largely unclear. METHODS: We used mice with VPS35 cKO (conditional knockout) in microglial cells and examined and compared their responses to ischemic stroke with control mice. The brain damage, cell death, changes in glial cells and gene expression, and sensorimotor deficits were assessed by a combination of immunohistochemical and immunofluorescence staining, RT-PCR, Western blot, and neurological functional behavior tests. RESULTS: We found that microglial VPS35 loss results in an increase of anti-inflammatory microglia in mouse cortex after ischemic stroke. The ischemic stroke-induced brain injury phenotypes, including brain damage, neuronal death, and sensorimotor deficits, were all attenuated by microglial VPS35-deficiency. Further analysis of protein expression changes revealed a reduction in CX3CR1 (CX3C chemokine receptor 1) in microglial VPS35-deficient cortex after ischemic stroke, implicating CX3CR1 as a potential cargo of VPS35 in this event. CONCLUSION: Together, these results reveal an unrecognized function of microglial VPS35 in enhancing ischemic brain injury-induced inflammatory microglia, but suppressing the injury-induced anti-inflammatory microglia. Consequently, microglial VPS35 cKO mice exhibit attenuation of ischemic brain injury response.


Assuntos
Isquemia Encefálica/metabolismo , Polaridade Celular/fisiologia , Microglia/metabolismo , Córtex Sensório-Motor/metabolismo , Acidente Vascular Cerebral/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Morte Celular/fisiologia , Modelos Animais de Doenças , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Camundongos , Camundongos Knockout , Destreza Motora/fisiologia , Córtex Sensório-Motor/patologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Proteínas de Transporte Vesicular/genética
11.
J Neurosci ; 38(26): 5949-5968, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29853629

RESUMO

Vacuolar sorting protein 35 (VPS35) is a critical component of retromer, which is essential for selective endosome-to-Golgi retrieval of membrane proteins. VPS35 deficiency is implicated in neurodegenerative disease pathology, including Alzheimer's disease (AD). However, exactly how VPS35 loss promotes AD pathogenesis remains largely unclear. VPS35 is expressed in various types of cells in the brain, including neurons and microglia. Whereas neuronal VPS35 plays a critical role in preventing neurodegeneration, the role of microglial VPS35 is largely unknown. Here we provide evidence for microglial VPS35's function in preventing microglial activation and promoting adult hippocampal neurogenesis. VPS35 is expressed in microglia in various regions of the mouse brain, with a unique distribution pattern in a brain region-dependent manner. Conditional knocking out of VPS35 in microglia of male mice results in regionally increased microglial density and activity in the subgranular zone of the hippocampal dentate gyrus (DG), accompanied by elevated neural progenitor proliferation, but decreased neuronal differentiation. Additionally, newborn neurons in the mutant DG show impaired dendritic morphology and reduced dendritic spine density. When examining the behavioral phenotypes of these animals, microglial VPS3S-depleted mice display depression-like behavior and impairment in long-term recognition memory. At the cellular level, VPS35-depleted microglia have grossly enlarged vacuolar structures with increased phagocytic activity toward postsynaptic marker PSD95, which may underlie the loss of dendritic spines observed in the mutant DG. Together, these findings identify an important role of microglial VPS35 in suppressing microglial activation and promoting hippocampal neurogenesis, which are both processes involved in AD pathogenesis.SIGNIFICANCE STATEMENT The findings presented here provide the first in vivo evidence that Vacuolar sorting protein 35 (VPS35)/retromer is essential for regulating microglial function and that when microglial retromer mechanics are disrupted, the surrounding brain tissue can be affected in a neurodegenerative manner. These findings present a novel, microglial-specific role of VPS35 and raise multiple questions regarding the mechanisms underlying our observations. These findings also have myriad implications for the field of retromer research and the role of retromer dysfunction in neurodegenerative pathophysiology. Furthermore, they implicate a pivotal role of microglia in the regulation of adult hippocampal neurogenesis and the survival/integration of newborn neurons in the adult hippocampus.


Assuntos
Depressão/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo , Neurogênese/fisiologia , Animais , Diferenciação Celular/fisiologia , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas de Transporte Vesicular
12.
Sci Rep ; 7(1): 2254, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28533515

RESUMO

Traumatic brain injury (TBI) can induce cognitive dysfunction due to the regional accumulation of hyperphosphorylated tau protein (p-tau). However, the factors that cause p-tau to concentrate in specific brain regions remain unclear. Here, we show that AQP4 polarization in the perivascular astrocytic end feet was impaired after TBI, which was most prominent in the ipsilateral brain tissue surrounding the directly impacted region and the contralateral hippocampal CA1 area and was accompanied by increased local p-tau, changes in dendritic spine density and morphology, and upregulation of the adenosine A2A receptor (A2AR). The critical role of the A2AR signaling in these pathological changes was confirmed by alleviation of the impairment of AQP4 polarity and accumulation of p-tau in the contralateral CA1 area in A2AR knockout mice. Given that p-tau can be released to the extracellular space and that the astroglial water transport via AQP4 is involved in tau clearance from the brain interstitium, our results suggest that regional disruption of AQP4 polarity following TBI may reduce the clearance of the toxic interstitial solutes such as p-tau and lead to changes in dendritic spine density and morphology. This may explain why TBI patients are more vulnerable to cognitive dysfunction.


Assuntos
Aquaporina 4/genética , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Região CA1 Hipocampal/metabolismo , Regulação da Expressão Gênica , Receptor A2A de Adenosina/metabolismo , Animais , Aquaporina 4/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Camundongos , Camundongos Knockout , Fosforilação , Receptor A2A de Adenosina/genética , Proteínas tau
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...