Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tradit Complement Med ; 11(2): 180-187, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33520684

RESUMO

BACKGROUND AND AIM: Huashi Baidu Decoction (HSBD) is a novel complex prescription which has positive effects on severe COVID-19. This study was aimed to discover key Chinese materia medica, main active compounds, hub therapeutic target proteins and core signal pathways in the potential therapeutic mechanism of HSBD on severe COVID-19 through integrating network pharmacological methods. EXPERIMENTAL PROCEDURE: TCMSP, TCMID and STITCH databases were used to screen out active compounds and target proteins of HSBD. GeneCards database was used to screen out disease genes of severe COVID-19. The potential therapeutic targets of HSBD on severe COVID-19 were used to construct protein-protein interaction network through STRING database and the hub target proteins were discovered. Next, GO and KEGG enrichment analysis were carried out to discover core signal pathways. Finally, the network diagram of "Chinese materia medica-active compounds-therapeutic target proteins" was built, then key Chinese materia medica and main active compounds were selected. RESULTS AND CONCLUSION: HSBD might treat severe COVID-19 through 45 potential target genes, among them, there were 13 hub target genes: RELA, TNF, IL6, IL1B, MAPK14, TP53, CXCL8, MAPK3, MAPK1, IL4, MAPK8, CASP8, STAT1. Meanswhile, GO_BiologicalProcess and KEGG signaling pathways analysis results showed that the core signal pathways were inflammation and immune regulation pathways. Finally, 4 key Chinese materia medica and 11 main active compounds were discovered in the HSBD. In conclusion, the therapeutic mechanism of HSBD on severe COVID-19 might involve its pharmacological effects of anti-inflammation and immune regulation via acting on 45 disease-related proteins of severe COVID-19. TAXONOMY CLASSIFICATION BY EVISE: Viral Pneumonia, COVID-19, Acute Respiratory Distress Syndrome, Septic Shock, Chinese Herbal Medicine.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35003311

RESUMO

BACKGROUND: Alcoholic fatty liver disease (AFLD) is the first stage of the alcoholic liver disease course. Yin-Chen-Hao-Tang (YCHT) has a good clinical effect on the treatment of AFLD, but its molecular mechanism has not been elucidated. In this study, we tried to explore the molecular mechanism of YCHT in improving hepatocyte steatosis in AFLD mice through network pharmacology and RNA sequencing (RNA-Seq) transcriptomics. METHODS: Network pharmacological methods were used to analyze the potential therapeutic signaling pathways and targets of YCHT on AFLD. Then, the AFLD mice model was induced and YCHT was administered concurrently. Liver injury was measured by serum alanine aminotransferase (ALT) activity and liver tissue H&E staining, and liver steatosis was determined by serum triglyceride (TG) level and liver tissue Oil Red staining. The molecular mechanism of YCHT on prevention and treatment of mice AFLD was investigated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differential expression genes data obtained by liver tissue RNA-Seq. Finally, ethanol-induced AFLD AML12 hepatocyte model was established, YCHT with or without PPARα agonist pemafibrate or PPARγ inhibitor GW9662 was administered, Nile Red fluorescent staining was used to evaluate steatosis levels in AML12 hepatocytes, and qRT-PCR was used to detect PPARα and PPARγ gene expression. RESULTS: The results of network pharmacology analysis showed that YCHT may exert its pharmacological effect on AFLD through 312 potential targets which are involved in many signaling pathways including the PPAR signaling pathway. AFLD mice experiments results showed that YCHT markedly decreased mice serum ALT activity and serum TG levels. YCHT also significantly improved alcohol-induced hepatic injury and steatosis in mice livers. Furthermore, KEGG pathway enrichment results of RNA-Seq showed that the PPAR signaling pathway should be the most relevant pathway of YCHT in the prevention and treatment of AFLD. AFLD hepatocyte model experiment results showed that YCHT could remarkably reduce hepatocyte steatosis through reducing PPARγ expression and increasing PPARα expression. CONCLUSIONS: Our study discovered that PPARγ and PPARα are the key targets and the PPAR signaling pathway is the main signaling pathway for YCHT to prevent and treat AFLD.

3.
Am J Pathol ; 190(1): 82-92, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610175

RESUMO

Aberrant liver sirtuin 1 (SIRT1), a mammalian NAD+-dependent protein deacetylase, is implicated in the pathogenesis of alcoholic liver disease (ALD). However, the role of intestinal SIRT1 in ALD is presently unknown. This study investigated the involvement of intestine-specific SIRT1 in ethanol-induced liver dysfunction in mice. Ethanol feeding studies were performed on knockout mice with intestinal-specific SIRT1 deletion [SIRT1i knockout (KO)] and flox control [wild-type (WT)] mice with a chronic-plus-binge ethanol feeding protocol. After ethanol administration, hepatic inflammation and liver injury were substantially attenuated in the SIRT1iKO mice compared with the WT mice, suggesting that intestinal SIRT1 played a detrimental role in the ethanol-induced liver injury. Mechanistically, the hepatic protective effect of intestinal SIRT1 deficiency was attributable to ameliorated dysfunctional iron metabolism, increased hepatic glutathione contents, and attenuated lipid peroxidation, along with inhibition of a panel of genes implicated in the ferroptosis process in the livers of ethanol-fed mice. This study demonstrates that ablation of intestinal SIRT1 protected mice from the ethanol-induced inflammation and liver damage. The protective effects of intestinal SIRT1 deficiency are mediated, at least partially, by mitigating hepatic ferroptosis. Targeting intestinal SIRT1 or dampening hepatic ferroptosis signaling may have therapeutic potential for ALD in humans.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Etanol/toxicidade , Ferroptose , Inflamação/prevenção & controle , Intestinos/fisiologia , Substâncias Protetoras , Sirtuína 1/fisiologia , Animais , Anti-Infecciosos Locais/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Transdução de Sinais
4.
Drug Des Devel Ther ; 13: 2873-2886, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695321

RESUMO

PURPOSE: Pulmonary fibrosis (PF) is a common clinical disease, which results in serious respiratory impairment. Xin Jia Xuan Bai Cheng Qi Decoction (XJXBCQ) is a traditional prescription commonly used in treating lung diseases. We investigate the effect of XJXBCQ against PF and its mechanism via the regulation of TGF-ß1/Smad in vitro and in vivo. MATERIALS AND METHODS: XJXBCQ was first extracted and probed for chemical characterization. An PF model in vitro and in vivo was established in rats and in MRC-5 cells. In bleomycin (BLM)-induced rats model, lung function such as peak expiratory flow (PEF), minute ventilation (MV) and hydroxyproline (HYP) were measured; histopathological changes of lung tissue and TGF-ß1 in peripheral blood of rats were detected. TGF-ß receptor, Smad2 and its phosphorylation expression were tested by Western blot assay in rats model. Then the effects of XJXBCQ on TGF-ß1/Smad signal pathway were assessed by Western blot analysis in vitro, and IL-17A and IL-25 levels were evaluated by ELISA in vivo. RESULTS: Our results showed that XJXBCQ significantly enhanced the lung functions, such as PEF, MV and HYP, by reducing the expression level of lung inflammatory cytokine and the content and fibrosis of lung collagen. Moreover, XJXBCQ effectively inhibited TGF-ß1, Smad2 and its phosphorylation expression, and the activation of Smad7 in vitro and in vivo. Furthermore, XJXBCQ had an inhibitory effect on the α-smooth muscle actin (α-SMA) and fibronectin (Fn) in vitro and downregulated IL-17A and IL-25 by inhibiting the activation of TGF-ß1/Smad signaling pathway in vitro and in vivo. Further, XJXBCQ effectively inhibitied ventilation volume and peak expiratory content remodeling and hydroxyproline content through inhibition of TGF-ßRⅡ, Smad2 and its phosphorylation expression, and activation of Smad7 in vivo. CONCLUSION: XJXBCQ extract had an anti-PF effect in vitro and in vivo, which could be attributed to the inhibition of the expression of p-Smad2 and increase in the expression of Smad7 by regulating the TGF-ß1/Smad activity.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Fibrose Pulmonar/fisiopatologia , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad7/metabolismo
5.
World J Gastroenterol ; 25(36): 5434-5450, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31576091

RESUMO

BACKGROUND: High mobility group box-1 (HMGB1), recognized as a representative of damage-associated molecular patterns, is released during cell injury/death, triggering the inflammatory response and ultimately resulting in tissue damage. Dozens of studies have shown that HMGB1 is involved in certain diseases, but the details on how injured hepatocytes release HMGB1 need to be elicited. AIM: To reveal HMGB1 release mechanism in hepatocytes undergoing oxidative stress. METHODS: C57BL6/J male mice were fed a high-fat diet for 12 wk plus a single binge of ethanol to induce severe steatohepatitis. Hepatocytes treated with H2O2 were used to establish an in vitro model. Serum alanine aminotransferase, liver H2O2 content and catalase activity, lactate dehydrogenase and 8-hydroxy-2-deoxyguanosine content, nicotinamide adenine dinucleotide (NAD+) levels, and Sirtuin 1 (Sirt1) activity were detected by spectrophotometry. HMGB1 release was measured by enzyme linked immunosorbent assay. HMGB1 translocation was observed by immunohistochemistry/immunofluorescence or Western blot. Relative mRNA levels were assayed by qPCR and protein expression was detected by Western blot. Acetylated HMGB1 and poly(ADP-ribose)polymerase 1 (Parp1) were analyzed by Immunoprecipitation. RESULTS: When hepatocytes were damaged, HMGB1 translocated from the nucleus to the cytoplasm because of its hyperacetylation and was passively released outside both in vivo and in vitro. After treatment with Sirt1-siRNA or Sirt1 inhibitor (EX527), the hyperacetylated HMGB1 in hepatocytes increased, and Sirt1 activity inhibited by H2O2 could be reversed by Parp1 inhibitor (DIQ). Parp1 and Sirt1 are two NAD+-dependent enzymes which play major roles in the decision of a cell to live or die in the context of stress . We showed that NAD+ depletion attributed to Parp1 activation after DNA damage was caused by oxidative stress in hepatocytes and resulted in Sirt1 activity inhibition. On the contrary, Sirt1 suppressed Parp1 by negatively regulating its gene expression and deacetylation. CONCLUSION: The functional inhibition between Parp1 and Sirt1 leads to HMGB1 hyperacetylation, which leads to its translocation from the nucleus to the cytoplasm and finally outside the cell.


Assuntos
Fígado Gorduroso/patologia , Proteína HMGB1/metabolismo , Hepatócitos/patologia , Fígado/patologia , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Animais , Carbazóis/farmacologia , Linhagem Celular , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Etanol/toxicidade , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/etiologia , Hepatócitos/citologia , Humanos , Peróxido de Hidrogênio/toxicidade , Fígado/citologia , Fígado/efeitos dos fármacos , Testes de Função Hepática , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Compostos de Quinolínio/farmacologia , RNA Interferente Pequeno/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética
6.
Hepatol Commun ; 3(5): 656-669, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31061954

RESUMO

Lipin-1 is a Mg2+-dependent phosphatidic acid phosphohydrolase involved in the generation of diacylglycerol during synthesis of phospholipids and triglycerides. Ethanol-mediated inhibitory effects on adipose-specific lipin-1 expression were associated with experimental steatohepatitis in rodents. In the present study, using an adipose-specific lipin-1 overexpression transgenic (Lpin1-Tg) mouse model, we tested a hypothesis that adipose-specific lipin-1 overexpression in mice might dampen ethanol-induced liver damage. Experimental alcoholic steatohepatitis was induced by pair-feeding ethanol to Lpin1-Tg and wild-type (WT) mice using the chronic-plus-binge ethanol feeding protocol. Unexpectedly, following the chronic-plus-binge ethanol challenge, Lpin1-Tg mice exhibited much more pronounced steatosis, exacerbated inflammation, augmented elevation of serum liver enzymes, hepatobiliary damage, and fibrogenic responses compared with the WT mice. Mechanistically, overexpression of adipose lipin-1 in mice facilitated the onset of hepatic ferroptosis, which is an iron-dependent form of cell death, and subsequently induced ferroptotic liver damage in mice under ethanol exposure. Concurrently, adipose lipin-1 overexpression induced defective adiponectin signaling pathways in ethanol-fed mice. Conclusion: We identified ferroptosis as a mechanism in mediating the detrimental effects of adipose-specific lipin-1 overexpression in mice under chronic-plus-binge ethanol exposure. Our present study sheds light on potential therapeutic approaches for the prevention and treatment of human alcoholic steatohepatitis.

7.
Chin Med ; 10: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26155304

RESUMO

BACKGROUND: Panax Notoginseng flower saponins (PNFS) are the main active component of Panax notoginseng (Burk) F. H. Chen flower bud (PNF) and possess significant anti-inflammatory efficacy. This study aims to explore the mechanisms underlying PNFS' antiflammatory action in RAW264.7 macrophages. METHODS: A cell counting kit-8 assay was used to determine the viability of RAW264.7 macrophages. Anti-inflammation effects of PNFS in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were measured based on the detection of nitric oxide (NO) overproduction (Griess method, DAF-FM DA fluorescence assay and NO2 (-) scavenging assay), and interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha gene overexpression (real-time PCR and ELISA). Inducible nitric oxide synthase (iNOS) gene overexpression was determined by real-time PCR and western blotting. iNOS enzyme activity was also assayed. The mechanisms underlying the suppression of iNOS gene overexpression by PNFS were explored using real-time PCR and western blotting to assess mRNA and protein levels of components of the Toll-like receptor 4 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor-kappa B (NF-kappa B) signaling pathways. RESULTS: PNFS (50, 100, 200 µg/mL) significantly reduced LPS-induced overproduction of NO (P < 0.001, P < 0.001, P < 0.001) and IL-6 (P = 0.103, P < 0.001, P < 0.001), but did not affect TNF-alpha overproduction. PNFS (50, 100, 200 µg/mL) also markedly decreased LPS-activated iNOS (P < 0.001, P < 0.001, P < 0.001) and TLR4 gene overexpression (P = 0.858, P = 0.046, P = 0.005). Furthermore, treatment with PNFS (200 µg/mL) suppressed the phosphorylation of MAPKs including P38 (P = 0.001), c-Jun N-terminal kinase (JNK) (P = 0.036) and extracellular-signal regulated kinase (ERK) 1/2 (P = 0.021). PNFS (200 µg/mL) inhibited the activation of the NF-kappa B signaling pathway by preventing the phosphorylation of inhibitor of NF-kappa B alpha (I-kappa B alpha) (P = 0.004) and P65 (P = 0.023), but PNFS (200 µg/mL) could not activate the LPS-induced PI3K-Akt signaling pathway. CONCLUSIONS: PNFS significantly down-regulated iNOS gene overexpression and thereby decreased NO overproduction via the inhibition of TLR4-mediated MAPK/NF-kappa B signaling pathways, but not the PI3K/Akt signaling pathway.

8.
World J Gastroenterol ; 18(25): 3235-49, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22783047

RESUMO

AIM: To investigate the cellular mechanisms of action of Yiguanjian (YGJ) decoction in treatment of chronic hepatic injury. METHODS: One group of mice was irradiated, and received enhanced green fluorescent protein (EGFP)-positive bone marrow transplants followed by 13 wk of CCl4 injection and 6 wk of oral YGJ administration. A second group of Institute for Cancer Research mice was treated with 13 wk of CCl4 injection and 6 wk of oral YGJ administration. Liver function, histological changes in the liver, and Hyp content were analyzed. The expression of α-smooth muscle actin (α-SMA), F4/80, albumin (Alb), EGFP, mitogen-activated protein kinase-2 (PKM2), Ki-67, α fetoprotein (AFP), monocyte chemotaxis protein-1 and CC chemokine receptor 2 were assayed. RESULTS: As hepatic damage progressed, EGFP-positive marrow cells migrated into the liver and were mainly distributed along the fibrous septa. They showed a conspicuous coexpression of EGFP with α-SMA and F4/80 but no coexpression with Alb. Moreover, the expression of PKM2, AFP and Ki-67 was enhanced dynamically and steadily over the course of liver injury. YGJ abrogated the increases in the number of bone marrow-derived fibrogenic cells in the liver, inhibited expression of both progenitor and mature hepatocyte markers, and reduced fibrogenesis. CONCLUSION: YGJ decoction improves liver fibrosis by inhibiting the migration of bone marrow cells into the liver as well as inhibiting their differentiation and suppressing the proliferation of both progenitors and hepatocytes in the injured liver.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Tetracloreto de Carbono , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Cirrose Hepática Experimental/tratamento farmacológico , Regeneração Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Actinas/metabolismo , Administração Oral , Albuminas/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Movimento Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quimiocina CCL2/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Antígeno Ki-67/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Receptores CCR2/metabolismo , Fatores de Tempo , alfa-Fetoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...