Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(17): 30098-30107, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242120

RESUMO

Stimulated Raman transition is a fundamental method to coherently manipulate quantum states in different physical systems. Phase-coherent dichromatic radiation fields matching the energy level splitting are the key to realizing stimulated Raman transition. Here we demonstrate a flexible-tuning, spectrum-clean and fiber-compatible method to generate a highly phase-coherent and high-power multi-tone laser. This method features the utilization of a broadband fiber Mach-Zehnder modulator working at carrier suppression condition and second harmonic generation. We generate a multi-tone continuous-wave 532 nm laser with a power of 1.5 Watts and utilize it to manipulate the spin and motional states of a trapped 171Yb+ ion via stimulated Raman transition. For spin state manipulation, we acquire an effective Rabi frequency of 2π × 662.3 kHz. Due to the broad bandwidth of the fiber modulator and nonlinear crystal, the frequency gap between tones can be flexibly tuned. Benefiting from the features above, this method can manipulate 171Yb+ and 137Ba+ simultaneously in the multi-species ion trap and has potential to be widely applied in atomic, molecular and optical physics.

2.
Opt Express ; 29(23): 38488-38496, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808901

RESUMO

In research on hybrid quantum networks, visible or near-infrared frequency conversion has been realized. However, technical limitations mean that there have been few studies involving the ultraviolet band, and unfortunately the wavelengths of the rare-earth or alkaline-earth metal atoms or ions that are used widely in research on quantum information are often in the UV band. Therefore, frequency conversion of the ultraviolet band is very important. In this paper, we demonstrate a quantum frequency conversion between ultraviolet and visible wavelengths by fabricating waveguides in a period-poled MgO:LiTaO3 crystal with a laser writing system, which will be used to connect the wavelength of the dipole transition of 171Yb+ at 369.5 nm and the absorption wavelength of Eu3+ at 580 nm in a solid-state quantum memory system. An external conversion efficiency of 0.85% and a signal-to-noise ratio of greater than 500 are realized with a pumping power of 3.28 W at 1018 nm. Furthermore, we complete frequency conversion of the classical polarization state by means of a symmetric optical setup based on the fabricated waveguide, and the process fidelity of the conversion is (96.13 ± 0.021)%. This converter paves the way for constructing a hybrid quantum network and realizing a quantum router in the ultraviolet band in the future.

3.
Pharmacology ; 100(5-6): 218-228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28728159

RESUMO

Metformin (MET) is the first-line drug for treating type 2 diabetes mellitus (T2DM). However, MET increases blood lactate levels in patients with T2DM. Lactate possesses proinflammatory properties and causes insulin resistance (IR). Oxamate (OXA), a lactate dehydrogenase inhibitor, can decrease tissue lactate production and blood lactate levels. This study was conducted to examine the effects of the combination of OXA and MET on inflammation, and IR in diabetic db/db mice. Supplementation of OXA to MET led to lowered tissue lactate production and serum lactate levels compared to MET alone, accompanied with further decreased tissue and blood levels of pro-inflammatory cytokines, along with better insulin sensitivity, beta-cell mass, and glycemic control in diabetic db/db mice. These results show that OXA enhances the anti-inflammatory and insulin-sensitizing effects of MET through the inhibition of tissue lactate production in db/db mice.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Metformina/farmacologia , Ácido Oxâmico/farmacologia , Animais , Glicemia/efeitos dos fármacos , Citocinas/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , L-Lactato Desidrogenase/antagonistas & inibidores , Ácido Láctico/sangue , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...