Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411558, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024117

RESUMO

Helicenes represent a class of fascinating π compounds with fused yet folded backbones. Despite their broad structural diversity, harnessing helicenes to develop well-defined materials is still a formidable challenge. Here we report the synthesis of crystalline porous helicene materials by exploring helicenes to synthesize covalent 2D lattices and layered π frameworks. Topology-directed polymerization of [6]helicenes and porphyrin creates 2D covalent networks with alternate helicene-porphyrin alignment along the x and y directions at a 1.5-nm interval and develops [6]helicene frameworks through reversed anti-AA stack along the z direction to form segregated [6]helicene and porphyrin columnar π arrays. Notably, this π configuration enables the frameworks to be highly red luminescent with benchmark quantum yields. The [6]helicene frameworks trigger effieicnt intra-framework singlet-to-singlet state energy transfer from [6]helicene to porphyrin and facilitate intermolecular triplet-to-triplet state energy transfer from frameworks to molecular oxygen to produce reactive oxygen species, harvesting a wide range of photons from ultraviolet to near-infrared regions for light emitting and photo-to-chemical conversion. This study introduces a new family of extended frameworks, laying the groundwork for exploring well-defined helicene materials with unprecedented structures and functions.

2.
J Am Chem Soc ; 146(15): 10953-10962, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565222

RESUMO

We report light gating in synthetic one-dimensional nanochannels of stable crystalline porous covalent organic frameworks. The frameworks consist of 2D hexagonal skeletons that are extended over the x-y plane and stacked along the z-direction to create dense yet aligned 1D mesoporous channels. The pores are designed to be photoadaptable by covalently integrating tetrafluoro-substituted azobenzene units onto edges, which protrude from walls and offer light-gating machinery confined in the channels. The implanted tetrafluoroazobenzene units are thermally stable yet highly sensitive to visible light to induce photoisomerization between the E and Z forms. Remarkably, photoisomerization induces drastic changes in intrapore polarity as well as pore shape and size, which exert profound effects on the molecular adsorption of a broad spectrum of compounds, ranging from inorganic iodine to organic dyes, drugs, and enzymes. Unexpectedly, the systems respond rapidly to visible lights to gate the molecular release of drugs and enzymes. Photoadaptable covalent organic frameworks with reversibly convertible pores offer a platform for constructing light-gating porous materials and tailorable delivery systems, remotely controlled by visible lights.

3.
Angew Chem Int Ed Engl ; 63(16): e202400009, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415815

RESUMO

Covalent organic frameworks are a novel class of crystalline porous polymers that enable molecular design of extended polygonal skeletons to attain well-defined porous structures. However, construction of a framework that allows remote control of pores remains a challenge. Here we report a strategy that merges covalent, noncovalent, and photo chemistries to design photoresponsive frameworks with reversibly and remotely controllable pores. We developed a topology-guided multicomponent polycondensation system that integrates protruded tetrafluoroazobenzene units as photoresponsive sites on pore walls at predesigned densities, so that a series of crystalline porous frameworks with the same backbone can be constructed to develop a broad spectrum of pores ranging from mesopores to micropores. Distinct from conventional azobenzene-based systems, the tetrafluoroazobenzene frameworks are highly sensitive to visible lights to undergo high-rate isomerization. The photoisomerization exerts profound effects on pore size, shape, number, and environment, as well as molecular uptake and release, rendering the system able to convert and switch pores reversibly and remotely with visible lights. Our results open a way to a novel class of smart porous materials with pore structures and functions that are convertible and manageable with visible lights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA