Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 26(12): 352, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33242158

RESUMO

The structure properties of chloramphenicol (CAP), including bond information and the Fukui function for the atoms in the main chain, were investigated computationally by density functional theory (DFT). The result shows that the chiral carbons in CAP offer the most active positions for chemical reactions, which is in good agreement with the experiment. The detailed degradation mechanism for CAP with hydroxyl radicals in advanced oxidation processes is further studied at the SMD/M06-2X/6-311 + G(d,p) level of theory. The main reaction methods, including the addition-elimination reaction, hydrogen abstract reaction, hydroxyl radical addition, and bond-breaking processes, are calculated. The results show that the nitro-elimination reaction is the most likely reaction in the first step of the degradation of CAP, and the latter two processes are more likely to be hydrogen abstract reactions. The details for the transition states, intermediate radicals, and free energy surfaces for all proposed reactions are given, which makes up for a lack of experimental knowledge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...