Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076435

RESUMO

Glacial retreat is changing biogeochemical cycling in the Arctic, where glacial runoff contributes iron for oceanic shelf primary production. We hypothesize that in Svalbard fjords, microbes catalyze intense iron and sulfur cycling in low-organic-matter sediments. This is because low organic matter limits sulfide generation, allowing iron mobility to the water column instead of precipitation as iron monosulfides. In this study, we tested this with high-depth-resolution 16S rRNA gene libraries in the upper 20 cm at two sites in Van Keulenfjorden, Svalbard. At the site closer to the glaciers, iron-reducing Desulfuromonadales, iron-oxidizing Gallionella and Mariprofundus, and sulfur-oxidizing Thiotrichales and Epsilonproteobacteria were abundant above a 12-cm depth. Below this depth, the relative abundances of sequences for sulfate-reducing Desulfobacteraceae and Desulfobulbaceae increased. At the outer station, the switch from iron-cycling clades to sulfate reducers occurred at shallower depths (∼5 cm), corresponding to higher sulfate reduction rates. Relatively labile organic matter (shown by δ13C and C/N ratios) was more abundant at this outer site, and ordination analysis suggested that this affected microbial community structure in surface sediments. Network analysis revealed more correlations between predicted iron- and sulfur-cycling taxa and with uncultured clades proximal to the glacier. Together, these results suggest that complex microbial communities catalyze redox cycling of iron and sulfur, especially closer to the glacier, where sulfate reduction is limited due to low availability of organic matter. Diminished sulfate reduction in upper sediments enables iron to flux into the overlying water, where it may be transported to the shelf.IMPORTANCE Glacial runoff is a key source of iron for primary production in the Arctic. In the fjords of the Svalbard archipelago, glacial retreat is predicted to stimulate phytoplankton blooms that were previously restricted to outer margins. Decreased sediment delivery and enhanced primary production have been hypothesized to alter sediment biogeochemistry, wherein any free reduced iron that could potentially be delivered to the shelf will instead become buried with sulfide generated through microbial sulfate reduction. We support this hypothesis with sequencing data that showed increases in the relative abundance of sulfate reducing taxa and sulfate reduction rates with increasing distance from the glaciers in Van Keulenfjorden, Svalbard. Community structure was driven by organic geochemistry, suggesting that enhanced input of organic material will stimulate sulfate reduction in interior fjord sediments as glaciers continue to recede.


Assuntos
Ferro/metabolismo , Microbiota , Água do Mar/microbiologia , Enxofre/metabolismo , Regiões Árticas , Mudança Climática , Estuários , Sedimentos Geológicos/microbiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Svalbard
2.
Sci Total Environ ; 635: 228-239, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29674257

RESUMO

Mercury (Hg) was discharged in the late 1960s into the Penobscot River by the Holtra-Chem chlor-alkali production facility, which was in operation from 1967 to 2000. To assess the transport and distribution of total Hg, and recovery of the river and estuary system from Hg pollution, physical and radiochemical data were assembled from sediment cores collected from 58 of 72 coring stations sampled in 2009. These stations were located throughout the lower Penobscot River, and included four principal study regions, the Penobscot River (PBR), Mendall Marsh (MM), the Orland River (OR), and the Penobscot estuary (ES). To provide the geochronology required to evaluate sedimentary total Hg profiles, 58 of 72 sediment cores were dated using the atmospheric radionuclide tracers 137Cs, 210Pb, and 239,240Pu. Sediment cores were assessed for depths of mixing, and for the determination of sediment accumulation rates using both geochemical (total Hg) and radiochemical data. At most stations, evidence for significant vertical mixing, derived from profiles of 7Be (where possible) and porosity, was restricted to the upper ~1-3cm. Thus, historic profiles of both total Hg and radionuclides were only minimally distorted, allowing a reconstruction of their depositional history. The pulse input tracers 137Cs and 239,240Pu used to assess sediment accumulation rates agreed well, while the steady state tracer 210Pb exhibited weaker agreement, likely due to irregular lateral sediment inputs.


Assuntos
Estuários , Sedimentos Geológicos/análise , Mercúrio/análise , Rios/química , Poluentes Químicos da Água/análise , Maine
3.
Sci Total Environ ; 622-623: 172-183, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223075

RESUMO

We examined total mercury (Hg) distributions in sediments from the Penobscot River and estuary, Maine, a site of extensive Hg releases from HoltraChem (1967-2000). Our objectives were to quantify: (1) bottom sediment Hg inventories (upper ~1m; 50-100 y); (2) sediment accumulation rates; and (3) contemporary Hg fluxes to bottom sediments; by sampling the Penobscot River (PBR), Mendall Marsh (MM), the Orland River (OR) and the Penobscot estuary (ES). Hg was rapidly distributed here, and the cumulative total (9.28 metric tons) associated with sediments system-wide was within the range released (6-12 metric tons). Evidence of sediment/Hg remobilization was observed in cores primarily from the PBR, and to a lesser extent the ES, whereas cores from MM, most of the OR, the ES, and half from the PBR exhibited sharp peaks in Hg concentrations at depth, followed by gradual decreases towards the surface. Based on background PBR sediment Hg concentrations (100ngg-1), "elevated" (300ngg-1), or "highly elevated" (600ngg-1) Hg concentrations in sediments, and resulting inventories, we assessed impact levels ("elevated"≥270, or "highly elevated"≥540mgm-2). 71% of PBR stations had "elevated", and 29% had "highly elevated" Hg inventories; 45% of MM stations had "elevated", and 27% had "highly elevated" inventories; 80% of OR stations had "elevated" inventories only; and 17% of ES stations had "elevated" inventories only. Most "highly elevated" stations were located within 8km of HoltraChem, in MM, in the PBR, and in the OR. Near-surface sediments in the OR, PBR and MM were all "highly elevated", while those in the ES were "elevated", on average. Mean Hg fluxes to bottom sediments were greatest in the OR (554), followed by the PBR (469), then MM (452), and finally the ES (204ngcm-2y-1).

4.
Proc Natl Acad Sci U S A ; 106(25): 10109-13, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19509340

RESUMO

This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves.


Assuntos
Desenvolvimento Vegetal , Salinidade , Cloreto de Sódio/química , Solo , Áreas Alagadas
5.
J Environ Radioact ; 69(3): 159-76, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12832157

RESUMO

Activities of radionuclides in the 238U (230Th, 226Ra, 210Pb) and 232Th (232Th, 228Th, 228Ra) decay series were determined in sediments from an east Texas watershed and examined with isotope ratios and compared to particulate organic carbon (POC), % fines (<63 microm) and total concentrations of Al, Fe and Mn. The objective was to elucidate the presence or absence of relationships affecting the effectiveness of these radionuclides in modeling sediment transport. Strong positive correlations were observed between radionuclides and Mn (Th) and % fines (Ra and Th). Isotope ratios effectively reduce these influences, supporting the contention that isotope ratios offset extrinsic variability in terrestrial sediments. Strong associations of 210Pbxs (excess 210Pb) and 226Ra/230Th with POC agree with data from marine and terrestrial settings, indicating that the role of POC in isotope fractionation, transport and sequestration merits further investigation.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Radioisótopos/análise , Movimentos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...