Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 19(6): 1795-1802, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266720

RESUMO

Human skin equivalents emerged as novel tools in preclinical dermatological research. It is being claimed that they may bridge the translational gap between preclinical and clinical research, yet only a few studies have investigated their suitability for preclinical drug testing so far. Therefore, we investigated if inflammatory skin equivalents, which emulate hallmarks of atopic dermatitis (AD), are suitable to assess the anti-inflammatory effects of dexamethasone (DXM) in a cream formulation or loaded onto dendritic core-multishell nanoparticles. Topical DXM application resulted in significantly decreased expression of the proinflammatory cytokine TSLP, increased expression of the skin barrier protein involucrin, and facilitated glucocorticoid receptor translocation in a dose-dependent manner. Further, DXM treatment inhibited gene expression of extracellular matrix components, potentially indicative of the known skin atrophy-inducing side effects of glucocorticoids. Overall, we were able to successfully assess the anti-inflammatory effects of DXM and the superiority of the nanoparticle formulation. Nevertheless the identification of robust readout parameters proved challenging and requires careful study design.


Assuntos
Anti-Inflamatórios , Nanopartículas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Humanos , Pele/metabolismo , Absorção Cutânea
3.
Biomacromolecules ; 19(12): 4607-4616, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30376297

RESUMO

Transdermal immunization is highly attractive because of the skin's accessibility and unique immunological characteristics. However, it remains a relatively unexplored route of administration because of the great difficulty of transporting antigens past the outermost layer of skin, the stratum corneum. In this article, the abilities of three poly( N-vinylcaprolactam) (PVCL)-based thermoresponsive assemblies-PVCL hydrogels and nanogels plus novel film forming PVCL/acrylic nanogels-to act as protein delivery systems were investigated. Similar thermal responses were observed in all systems, with transition temperatures close to 32 °C, close to that of the skin surface. The investigated dermal delivery systems showed no evidence of cytotoxicity in human fibroblasts and were able to load and release ovalbumin (OVA), a well-studied antigen, in a temperature-dependent manner in vitro. The penetration of OVA into ex vivo human skin following topical application was evaluated, where enhanced skin delivery was seen for the OVA-loaded PVCL systems relative to administration of the protein alone. The distinct protein release and skin penetration profiles observed for the different PVCL assemblies were here discussed on the basis of their structural differences.


Assuntos
Antígenos/química , Portadores de Fármacos , Hidrogéis/química , Nanopartículas/química , Administração Cutânea , Antígenos/administração & dosagem , Caprolactama/química , Derme/efeitos dos fármacos , Derme/patologia , Epiderme/efeitos dos fármacos , Epiderme/patologia , Humanos , Hidrogéis/administração & dosagem , Nanopartículas/administração & dosagem , Ovalbumina/administração & dosagem , Ovalbumina/química , Polietilenoglicóis/síntese química , Polietilenoimina/química , Polímeros/administração & dosagem , Polímeros/química , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Temperatura , Vacinação
4.
Oncotarget ; 9(67): 32822-32840, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30214687

RESUMO

Epigenetic silencing of tumour suppressor genes is a key hallmark of colorectal carcinogenesis. Despite this, the therapeutic potential of epigenetic agents capable of reactivating these silenced genes remains relatively unexplored. Evidence has shown the dietary antioxidant vitamin C (ascorbate) acts as an inducer of the ten-eleven translocation (TET) dioxygenases, an enzyme family that catalyses a recently described mechanism of DNA demethylation linked to gene re-expression. In this study, we set out to determine whether vitamin C can enhance the known anti-neoplastic actions of the DNA-demethylating agents decitabine (DAC) and azacytidine (AZA) in colorectal cancer cells. Administration of vitamin C alone significantly enhanced global levels of 5-hydroxymethyl-2'-deoxycytidine (5-hmdC), without altering 5-methyl-2'-deoxycytidine (5-mdC), as would be expected upon the activation of TET dioxygenases. Concomitant treatment of vitamin C with either AZA or DAC resulted in an unexpectedly high increase of global 5-hmdC levels, one that administration of any these compounds alone could not achieve. Notably, this was also accompanied by increased expression of the tumour suppressor p21 (CDKN1A), and a significant increase in apoptotic cell induction. Our in vitro data leads us to hypothesize that the reactivation of genes in colorectal cancer cells by AZA or DAC can be improved when the 5-hmdC levels are simultaneously increased by the TET activator vitamin C. The dual administration of demethylating agents and vitamin C to colorectal cancer patients, a demographic in which vitamin C deficiencies are common, may improve responses to epigenetic therapies.

5.
Biomacromolecules ; 18(6): 1762-1771, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28511014

RESUMO

The adsorption of biomolecules to the surface of nanoparticles (NPs) following administration into biological environments is widely recognized. In particular, the "protein corona" is well understood in terms of formation kinetics and impact upon the biological interactions of NPs. Its presence is an essential consideration in the design of therapeutic NPs. In the present study, the protein coronas of six polymeric nanoparticles of prospective therapeutic use were investigated. These included three colloidal NPs-soft core-multishell (CMS) NPs, plus solid cationic Eudragit RS (EGRS), and anionic ethyl cellulose (EC) nanoparticles-and three nanogels (NGs)-thermoresponsive dendritic-polyglycerol (dPG) nanogels (NGs) and two amino-functionalized dPG-NGs. Following incubation with human plasma, protein coronas were characterized and their biological interactions compared with pristine NPs. All NPs demonstrated protein adsorption and increased hydrodynamic diameters, although the solid EGRS and EC NPs bound notably more protein than the other tested particles. Shifts toward moderately negative surface charges were also observed for all corona bearing NPs, despite varied zeta potentials in their pristine states. While the uptake and cellular adhesion of the colloidal NPs in primary human keratinocytes and human umbilical vein endothelial cells were significantly decreased when bearing the protein corona, no obvious impact was seen in the NGs. By contrast, corona bearing NGs induced marked increases in cytokine release from primary human macrophages not seen with corona bearing colloidal NPs. Despite this, no apparent enhancement to in vitro toxicity was noted. Finally, drug release from EGRS and EC NPs was assessed, where a decrease was seen in the EGRS NPs alone. Together these results provide a direct comparison of the physical and biological impact the protein corona has on NPs of widely varied character and in particular highlights a distinction between the corona's effects on NGs and colloidal NPs.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/química , Celulose/análogos & derivados , Glicerol/química , Nanopartículas/química , Polímeros/química , Coroa de Proteína/química , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Materiais Biocompatíveis/farmacologia , Proteínas Sanguíneas/química , Celulose/química , Coloides , Citocinas/biossíntese , Citocinas/metabolismo , Dexametasona/química , Dexametasona/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Cultura Primária de Células , Eletricidade Estática
6.
Nanotoxicology ; 11(2): 267-277, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28165853

RESUMO

Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery.


Assuntos
Materiais Biocompatíveis/metabolismo , Portadores de Fármacos/metabolismo , Glicerol/química , Queratinócitos/metabolismo , Polietilenoglicóis/metabolismo , Polietilenoimina/metabolismo , Polímeros/química , Pele/metabolismo , Resinas Acrílicas , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Córnea/efeitos dos fármacos , Dano ao DNA , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Microscopia Confocal , Nanogéis , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Polietilenoimina/química , Polietilenoimina/toxicidade , Cultura Primária de Células , Absorção Cutânea , Temperatura
7.
ACS Nano ; 8(5): 4650-61, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24724711

RESUMO

Optimizing the shape of a nanovector influences its interaction with a cell and determines the internalization kinetics. Block copolymer amphiphiles self-assemble into monodisperse structures in aqueous solutions and have been explored extensively as drug delivery vectors. However, the structure of self-assembled block copolymers has mainly been limited to spherical vesicles or spherical and worm-like micelles. Here we show the controlled formation and purification of tubular polymersomes, long cylindrical vesicles. Tubular polymersomes are purified from other structures, and their formation is manipulated by incorporating the biocompatible membrane components cholesterol and phospholipids. Finally we show that these tubular polymersomes have different cellular internalization kinetics compared with spherical polymersomes and can successfully encapsulate and deliver fluorescent bovine serum albumin protein intracellularly.


Assuntos
Portadores de Fármacos , Nanotecnologia/métodos , Polímeros/química , Animais , Materiais Biocompatíveis/química , Bovinos , Linhagem Celular Tumoral , Colesterol/química , Endocitose , Humanos , Concentração de Íons de Hidrogênio , Micelas , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanotubos/química , Neutrófilos/metabolismo , Fosfolipídeos/química , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...