Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 338, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771321

RESUMO

Fucosyl-oligosaccharides (FUS) provide many health benefits to breastfed infants, but they are almost completely absent from bovine milk, which is the basis of infant formula. Therefore, there is a growing interest in the development of enzymatic transfucosylation strategies for the production of FUS. In this work, the α-L-fucosidases Fuc2358 and Fuc5372, previously isolated from the intestinal bacterial metagenome of breastfed infants, were used to synthesize fucosyllactose (FL) by transfucosylation reactions using p-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as donor and lactose as acceptor. Fuc2358 efficiently synthesized the major fucosylated human milk oligosaccharide (HMO) 2'-fucosyllactose (2'FL) with a 35% yield. Fuc2358 also produced the non-HMO FL isomer 3'-fucosyllactose (3'FL) and traces of non-reducing 1-fucosyllactose (1FL). Fuc5372 showed a lower transfucosylation activity compared to Fuc2358, producing several FL isomers, including 2'FL, 3'FL, and 1FL, with a higher proportion of 3'FL. Site-directed mutagenesis using rational design was performed to increase FUS yields in both α-L-fucosidases, based on structural models and sequence identity analysis. Mutants Fuc2358-F184H, Fuc2358-K286R, and Fuc5372-R230K showed a significantly higher ratio between 2'FL yields and hydrolyzed pNP-Fuc than their respective wild-type enzymes after 4 h of transfucosylation. The results with the Fuc2358-F184W and Fuc5372-W151F mutants showed that the residues F184 of Fuc2358 and W151 of Fuc5372 could have an effect on transfucosylation regioselectivity. Interestingly, phenylalanine increases the selectivity for α-1,2 linkages and tryptophan for α-1,3 linkages. These results give insight into the functionality of the active site amino acids in the transfucosylation activity of the GH29 α-L-fucosidases Fuc2358 and Fuc5372. KEY POINTS: Two α-L-fucosidases from infant gut bacterial microbiomes can fucosylate glycans Transfucosylation efficacy improved by tailored point-mutations in the active site F184 of Fuc2358 and W151 of Fuc5372 seem to steer transglycosylation regioselectivity.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Leite Humano , Trissacarídeos , alfa-L-Fucosidase , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Humanos , Trissacarídeos/metabolismo , Leite Humano/química , Lactose/metabolismo , Oligossacarídeos/metabolismo , Mutagênese Sítio-Dirigida , Lactente , Fucose/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139191

RESUMO

Rotavirus (RV) is the leading cause of acute gastroenteritis (AGE) in children under 5 years old worldwide, and several studies have demonstrated that histo-blood group antigens (HBGAs) play a role in its infection process. In the present study, human stool filtrates from patients diagnosed with RV diarrhea (genotyped as P[8]) were used to infect differentiated Caco-2 cells (dCaco-2) to determine whether such viral strains of clinical origin had the ability to replicate in cell cultures displaying HBGAs. The cell culture-adapted human RV Wa model strain (P[8] genotype) was used as a control. A time-course analysis of infection was conducted in dCaco-2 at 1, 24, 48, 72, and 96 h. The replication of two selected clinical isolates and Wa was further assayed in MA104, undifferentiated Caco-2 (uCaco-2), HT29, and HT29-M6 cells, as well as in monolayers of differentiated human intestinal enteroids (HIEs). The results showed that the culture-adapted Wa strain replicated more efficiently in MA104 cells than other utilized cell types. In contrast, clinical virus isolates replicated more efficiently in dCaco-2 cells and HIEs. Furthermore, through surface plasmon resonance analysis of the interaction between the RV spike protein (VP8*) and its glycan receptor (the H antigen), the V7 RV clinical isolate showed 45 times better affinity compared to VP8* from the Wa strain. These findings support the hypothesis that the differences in virus tropism between clinical virus isolates and RV Wa could be a consequence of the different HBGA contents on the surface of the cell lines employed. dCaco-2, HT29, and HT29M6 cells and HIEs display HBGAs on their surfaces, whereas MA104 and uCaco-2 cells do not. These results indicate the relevance of using non-cell culture-adapted human RV to investigate the replication of rotavirus in relevant infection models.


Assuntos
Antígenos de Grupos Sanguíneos , Gastroenterite , Infecções por Rotavirus , Rotavirus , Criança , Humanos , Pré-Escolar , Rotavirus/metabolismo , Infecções por Rotavirus/genética , Células CACO-2 , Antígenos de Grupos Sanguíneos/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37373145

RESUMO

Sialic acids (SAs) are α-keto-acid sugars with a nine-carbon backbone present at the non-reducing end of human milk oligosaccharides and the glycan moiety of glycoconjugates. SAs displayed on cell surfaces participate in the regulation of many physiologically important cellular and molecular processes, including signaling and adhesion. Additionally, sialyl-oligosaccharides from human milk act as prebiotics in the colon by promoting the settling and proliferation of specific bacteria with SA metabolism capabilities. Sialidases are glycosyl hydrolases that release α-2,3-, α-2,6- and α-2,8-glycosidic linkages of terminal SA residues from oligosaccharides, glycoproteins and glycolipids. The research on sialidases has been traditionally focused on pathogenic microorganisms, where these enzymes are considered virulence factors. There is now a growing interest in sialidases from commensal and probiotic bacteria and their potential transglycosylation activity for the production of functional mimics of human milk oligosaccharides to complement infant formulas. This review provides an overview of exo-alpha-sialidases of bacteria present in the human gastrointestinal tract and some insights into their biological role and biotechnological applications.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Humanos , Leite Humano/química , Neuraminidase/metabolismo , Polissacarídeos/análise , Ácidos Siálicos/metabolismo , Bactérias/metabolismo , Oligossacarídeos/química
4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142552

RESUMO

Human noroviruses (HuNoVs) are the main cause of acute gastroenteritis causing more than 50,000 deaths per year. Recent evidence shows that the gut microbiota plays a key role in enteric virus infectivity. In this context, we tested whether microbiota depletion or microbiota replacement with that of human individuals susceptible to HuNoVs infection could favor viral replication in mice. Four groups of mice (n = 5) were used, including a control group and three groups that were treated with antibiotics to eliminate the autochthonous intestinal microbiota. Two of the antibiotic-treated groups received fecal microbiota transplantation from a pool of feces from infants (age 1-3 months) or an auto-transplantation with mouse feces that obtained prior antibiotic treatment. The inoculation of the different mouse groups with a HuNoVs strain (GII.4 Sydney [P16] genotype) showed that the virus replicated more efficiently in animals only treated with antibiotics but not subject to microbiota transplantation. Viral replication in animals receiving fecal microbiota from newborn infants was intermediate, whereas virus excretion in feces from auto-transplanted mice was as low as in the control mice. The analysis of the fecal microbiota by 16S rDNA NGS showed deep variations in the composition in the different mice groups. Furthermore, differences were observed in the gene expression of relevant immunological mediators, such as IL4, CXCL15, IL13, TNFα and TLR2, at the small intestine. Our results suggest that microbiota depletion eliminates bacteria that restrict HuNoVs infectivity and that the mechanism(s) could involve immune mediators.


Assuntos
Infecções por Caliciviridae , Norovirus , Animais , Antibacterianos/farmacologia , Bactérias/genética , DNA Ribossômico , Fezes/microbiologia , Humanos , Lactente , Interleucina-13 , Interleucina-4 , Camundongos , Norovirus/genética , Receptor 2 Toll-Like , Fator de Necrose Tumoral alfa
5.
Microbiol Spectr ; 10(4): e0177522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35943155

RESUMO

The gastrointestinal microbiota members produce α-l-fucosidases that play key roles in mucosal, human milk, and dietary oligosaccharide assimilation. Here, 36 open reading frames (ORFs) coding for putative α-l-fucosidases belonging to glycosyl hydrolase family 29 (GH29) were identified through metagenome analysis of breast-fed infant fecal microbiome. Twenty-two of those ORFs showed a complete coding sequence with deduced amino acid sequences displaying the highest degree of identity with α-l-fucosidases from Bacteroides thetaiotaomicron, Bacteroides caccae, Phocaeicola vulgatus, Phocaeicola dorei, Ruminococcus gnavus, and Streptococcus parasanguinis. Based on sequence homology, 10 α-l-fucosidase genes were selected for substrate specificity characterization. The α-l-fucosidases Fuc18, Fuc19A, Fuc35B, Fuc39, and Fuc1584 showed hydrolytic activity on α1,3/4-linked fucose present in Lewis blood antigens and the human milk oligosaccharide (HMO) 3-fucosyllactose. In addition, Fuc1584 also hydrolyzed fucosyl-α-1,6-N-acetylglucosamine (6FN), a component of the core fucosylation of N-glycans. Fuc35A and Fuc193 showed activity on α1,2/3/4/6 linkages from H type-2, Lewis blood antigens, HMOs and 6FN. Fuc30 displayed activity only on α1,6-linked l-fucose, and Fuc5372 showed a preference for α1,2 linkages. Fuc2358 exhibited a broad substrate specificity releasing l-fucose from all the tested free histo-blood group antigens, HMOs, and 6FN. This latest enzyme also displayed activity in glycoconjugates carrying lacto-N-fucopentaose II (Lea) and lacto-N-fucopentaose III (Lex) and in the glycoprotein mucin. Fuc18, Fuc19A, and Fuc39 also removed l-fucose from neoglycoproteins and human α-1 acid glycoprotein. These results give insight into the great diversity of α-l-fucosidases from the infant gut microbiota, thus supporting the hypothesis that fucosylated glycans are crucial for shaping the newborn microbiota composition. IMPORTANCE α-l-Fucosyl residues are frequently present in many relevant glycans, such as human milk oligosaccharides (HMOs), histo-blood group antigens (HBGAs), and epitopes on cell surface glycoconjugate receptors. These fucosylated glycans are involved in a number of mammalian physiological processes, including adhesion of pathogens and immune responses. The modulation of l-fucose content in such processes may provide new insights and knowledge regarding molecular interactions and may help to devise new therapeutic strategies. Microbial α-l-fucosidases are exoglycosidases that remove α-l-fucosyl residues from free oligosaccharides and glycoconjugates and can be also used in transglycosylation reactions to synthesize oligosaccharides. In this work, α-l-fucosidases from the GH29 family were identified and characterized from the metagenome of fecal samples of breastfed infants. These enzymes showed different substrate specificities toward HMOs, HBGAs, naturally occurring glycoproteins, and neoglycoproteins. These novel glycosidase enzymes from the breast-fed infant gut microbiota, which resulted in a good source of α-l-fucosidases, have great biotechnological potential.


Assuntos
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Animais , Antígenos de Grupos Sanguíneos/análise , Antígenos de Grupos Sanguíneos/metabolismo , Fucose/análise , Fucose/química , Fucose/metabolismo , Glicoconjugados/análise , Glicoconjugados/metabolismo , Humanos , Lactente , Recém-Nascido , Mamíferos/genética , Mamíferos/metabolismo , Metagenoma , Leite Humano/química , Leite Humano/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
6.
Sci Rep ; 11(1): 23328, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857830

RESUMO

Much evidence suggests a role for human milk oligosaccharides (HMOs) in establishing the infant microbiota in the large intestine, but the response of particular bacteria to individual HMOs is not well known. Here twelve bacterial strains belonging to the genera Bifidobacterium, Enterococcus, Limosilactobacillus, Lactobacillus, Lacticaseibacillus, Staphylococcus and Streptococcus were isolated from infant faeces and their growth was analyzed in the presence of the major HMOs, 2'-fucosyllactose (2'FL), 3-fucosyllactose (3FL), 2',3-difucosyllactose (DFL), lacto-N-tetraose (LNT) and lacto-N-neo-tetraose (LNnT), present in human milk. Only the isolated Bifidobacterium strains demonstrated the capability to utilize these HMOs as carbon sources. Bifidobacterium infantis Y538 efficiently consumed all tested HMOs. Contrarily, Bifidobacterium dentium strains Y510 and Y521 just metabolized LNT and LNnT. Both tetra-saccharides are hydrolyzed into galactose and lacto-N-triose (LNTII) by B. dentium. Interestingly, this species consumed only the galactose moiety during growth on LNT or LNnT, and excreted the LNTII moiety. Two ß-galactosidases were characterized from B. dentium Y510, Bdg42A showed the highest activity towards LNT, hydrolyzing it into galactose and LNTII, and Bdg2A towards lactose, degrading efficiently also 6'-galactopyranosyl-N-acetylglucosamine, N-acetyl-lactosamine and LNnT. The work presented here supports the hypothesis that HMOs are mainly metabolized by Bifidobacterium species in the infant gut.


Assuntos
Bifidobacterium/fisiologia , Fezes/microbiologia , Galactose/metabolismo , Trato Gastrointestinal/microbiologia , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Galactosidases/metabolismo , Humanos , Lactente , Leite Humano/microbiologia , Trissacarídeos/metabolismo
7.
Biomedicines ; 9(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34356911

RESUMO

Intestinal microbiota-virus-host interaction has emerged as a key factor in mediating enteric virus pathogenicity. With the aim of analyzing whether human gut bacteria improve the inefficient replication of human rotavirus in mice, we performed fecal microbiota transplant (FMT) with healthy infants as donors in antibiotic-treated mice. We showed that a simple antibiotic treatment, irrespective of FMT, resulted in viral shedding for 6 days after challenge with the human rotavirus G1P[8] genotype Wa strain (RVwa). Rotavirus titers in feces were also significantly higher in antibiotic-treated animals with or without FMT but they were decreased in animals subject to self-FMT, where a partial re-establishment of specific bacterial taxons was evidenced. Microbial composition analysis revealed profound changes in the intestinal microbiota of antibiotic-treated animals, whereas some bacterial groups, including members of Lactobacillus, Bilophila, Mucispirillum, and Oscillospira, recovered after self-FMT. In antibiotic-treated and FMT animals where the virus replicated more efficiently, differences were observed in gene expression of immune mediators, such as IL1ß and CXCL15, as well as in the fucosyltransferase FUT2, responsible for H-type antigen synthesis in the small intestine. Collectively, our results suggest that antibiotic-induced microbiota depletion eradicates the microbial taxa that restrict human rotavirus infectivity in mice.

8.
Gut Microbes ; 13(1): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33938391

RESUMO

Human milk glycans present a unique diversity of structures that suggest different mechanisms by which they may affect the infant microbiome development. A humanized mouse model generated by infant fecal transplantation was utilized here to evaluate the impact of fucosyl-α1,3-GlcNAc (3FN), fucosyl-α1,6-GlcNAc, lacto-N-biose (LNB) and galacto-N-biose on the fecal microbiota and host-microbiota interactions. 16S rRNA amplicon sequencing showed that certain bacterial genera significantly increased (Ruminococcus and Oscillospira) or decreased (Eubacterium and Clostridium) in all disaccharide-supplemented groups. Interestingly, cluster analysis differentiates the consumption of fucosyl-oligosaccharides from galactosyl-oligosaccharides, highlighting the disappearance of Akkermansia genus in both fucosyl-oligosaccharides. An increment of the relative abundance of Coprococcus genus was only observed with 3FN. As well, LNB significantly increased the relative abundance of Bifidobacterium, whereas the absolute levels of this genus, as measured by quantitative real-time PCR, did not significantly increase. OTUs corresponding to the species Bifidobacterium longum, Bifidobacterium adolescentis and Ruminococcus gnavus were not present in the control after the 3-week intervention, but were shared among the donor and specific disaccharide groups, indicating that their survival is dependent on disaccharide supplementation. The 3FN-feeding group showed increased levels of butyrate and acetate in the colon, and decreased levels of serum HDL-cholesterol. 3FN also down-regulated the pro-inflammatory cytokine TNF-α and up-regulated the anti-inflammatory cytokines IL-10 and IL-13, and the Toll-like receptor 2 in the large intestine tissue. The present study revealed that the four disaccharides show efficacy in producing beneficial compositional shifts of the gut microbiota and in addition, the 3FN demonstrated physiological and immunomodulatory roles.


Assuntos
Bactérias/metabolismo , Dissacarídeos/metabolismo , Microbioma Gastrointestinal , Leite Humano/metabolismo , Acetatos/metabolismo , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Butiratos/metabolismo , DNA Bacteriano/genética , Dissacarídeos/análise , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Leite Humano/química , RNA Ribossômico 16S/genética , Adulto Jovem
9.
Sci Rep ; 10(1): 11845, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678209

RESUMO

Human milk oligosaccharides (HMOs) are a mixture of structurally diverse carbohydrates that contribute to shape a healthy gut microbiota composition. The great diversity of the HMOs structures does not allow the attribution of specific prebiotic characteristics to single milk oligosaccharides. We analyze here the utilization of four disaccharides, lacto-N-biose (LNB), galacto-N-biose (GNB), fucosyl-α1,3-GlcNAc (3FN) and fucosyl-α1,6-GlcNAc (6FN), that form part of HMOs and glycoprotein structures, by the infant fecal microbiota. LNB significantly increased the total levels of bifidobacteria and the species Bifidobacterium breve and Bifidobacterium bifidum. The Lactobacillus genus levels were increased by 3FN fermentation and B. breve by GNB and 3FN. There was a significant reduction of Blautia coccoides group with LNB and 3FN. In addition, 6FN significantly reduced the levels of Enterobacteriaceae family members. Significantly higher concentrations of lactate, formate and acetate were produced in cultures containing either LNB or GNB in comparison with control cultures. Additionally, after fermentation of the oligosaccharides by the fecal microbiota, several Bifidobacterium strains were isolated and identified. The results presented here indicated that each, LNB, GNB and 3FN disaccharide, might have a specific beneficial effect in the infant gut microbiota and they are potential prebiotics for application in infant foods.


Assuntos
Acetilglucosamina/análogos & derivados , Acetilglucosamina/isolamento & purificação , Dissacaridases/isolamento & purificação , Dissacarídeos/isolamento & purificação , Leite Humano/química , Prebióticos/análise , Acetatos/metabolismo , Bifidobacterium bifidum/classificação , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/isolamento & purificação , Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/classificação , Bifidobacterium breve/genética , Bifidobacterium breve/isolamento & purificação , Bifidobacterium breve/metabolismo , Clostridiales/classificação , Clostridiales/genética , Clostridiales/isolamento & purificação , Clostridiales/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Fezes/microbiologia , Formiatos/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Lactente , Ácido Láctico/metabolismo , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo
10.
mBio ; 11(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937642

RESUMO

The survival of commensal bacteria in the human gut partially depends on their ability to metabolize host-derived molecules. The use of the glycosidic moiety of N-glycoproteins by bacteria has been reported, but the role of N-glycopeptides or glycoamino acids as the substrates for bacterial growth has not been evaluated. We have identified in Lactobacillus casei strain BL23 a gene cluster (alf-2) involved in the catabolism of the glycoamino acid fucosyl-α-1,6-N-GlcNAc-Asn (6'FN-Asn), a constituent of the core-fucosylated structures of mammalian N-glycoproteins. The cluster consists of the genes alfHC, encoding a major facilitator superfamily (MFS) permease and the α-l-fucosidase AlfC, and the divergently oriented asdA (aspartate 4-decarboxylase), alfR2 (transcriptional regulator), pepV (peptidase), asnA2 (glycosyl-asparaginase), and sugK (sugar kinase) genes. Knockout mutants showed that alfH, alfC, asdA, asnA2, and sugK are necessary for efficient 6'FN-Asn utilization. The alf-2 genes are induced by 6'FN-Asn, but not by its glycan moiety, via the AlfR2 regulator. The constitutive expression of alf-2 genes in an alfR2 strain allowed the metabolism of a variety of 6'-fucosyl-glycans. However, GlcNAc-Asn did not support growth in this mutant background, indicating that the presence of a 6'-fucose moiety is crucial for substrate transport via AlfH. Within bacteria, 6'FN-Asn is defucosylated by AlfC, generating GlcNAc-Asn. This glycoamino acid is processed by the glycosylasparaginase AsnA2. GlcNAc-Asn hydrolysis generates aspartate and GlcNAc, which is used as a fermentable source by L.casei These data establish the existence in a commensal bacterial species of an exclusive metabolic pathway likely to scavenge human milk and mucosal fucosylated N-glycopeptides in the gastrointestinal tract.IMPORTANCE The gastrointestinal tract accommodates more than 1014 microorganisms that have an enormous impact on human health. The mechanisms enabling commensal bacteria and administered probiotics to colonize the gut remain largely unknown. The ability to utilize host-derived carbon and energy resources available at the mucosal surfaces may provide these bacteria with a competitive advantage in the gut. Here, we have identified in the commensal species Lactobacillus casei a novel metabolic pathway for the utilization of the glycoamino acid fucosyl-α-1,6-N-GlcNAc-Asn, which is present in the core-fucosylated N-glycoproteins from mammalians. These results give insight into the molecular interactions between the host and commensal/probiotic bacteria and may help to devise new strategies to restore gut microbiota homeostasis in diseases associated with dysbiotic microbiota.


Assuntos
Asparagina/análogos & derivados , Fucose/análogos & derivados , Trato Gastrointestinal/microbiologia , Interações entre Hospedeiro e Microrganismos , Lacticaseibacillus casei/metabolismo , Redes e Vias Metabólicas , Asparagina/metabolismo , Fucose/metabolismo , Humanos , Lacticaseibacillus casei/genética , Família Multigênica , Probióticos , Simbiose
11.
J Agric Food Chem ; 68(7): 1884-1895, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31523960

RESUMO

A beverage enriched with plant sterols (1 g/100 mL) and galactooligosaccharides (1.8 g/100 mL) was subjected to a dynamic gastrointestinal and colonic fermentation process to evaluate the effect on sterol metabolism, organic acid production, and microbiota composition. Production of sterol metabolites (coprostanol, methylcoprostanol, ethylcoprostenol, ethylcoprostanol, and sitostenone) was observed in the transverse colon (TC) and descending colon (DC) vessels in general, from 24 and 48 h, respectively. Microbial activity was assessed through the production of organic acids, mainly acetate in all colon vessels, lactate in the AC, and butyrate and propionate in the TC and DC. A higher diversity in the microbial community was found in the TC and DC, in accordance with a higher sterol metabolism and organic acid production. Although the prebiotic effect of galactooligosaccharides was not detected, changes in microbiota composition (an increase in the Parabacteroides genus and the Synergistaceae and Lachnospiraceae families) indicated an enhancement of sterol metabolism.


Assuntos
Bactérias/isolamento & purificação , Bebidas/análise , Colo/microbiologia , Oligossacarídeos/metabolismo , Fitosteróis/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Colo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Humanos , Modelos Biológicos
12.
PLoS Pathog ; 15(6): e1007865, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226167

RESUMO

Rotavirus is the leading agent causing acute gastroenteritis in young children, with the P[8] genotype accounting for more than 80% of infections in humans. The molecular bases for binding of the VP8* domain from P[8] VP4 spike protein to its cellular receptor, the secretory H type-1 antigen (Fuc-α1,2-Gal-ß1,3-GlcNAc; H1), and to its precursor lacto-N-biose (Gal-ß1,3-GlcNAc; LNB) have been determined. The resolution of P[8] VP8* crystal structures in complex with H1 antigen and LNB and site-directed mutagenesis experiments revealed that both glycans bind to the P[8] VP8* protein through a binding pocket shared with other members of the P[II] genogroup (i.e.: P[4], P[6] and P[19]). Our results show that the L-fucose moiety from H1 only displays indirect contacts with P[8] VP8*. However, the induced conformational changes in the LNB moiety increase the ligand affinity by two-fold, as measured by surface plasmon resonance (SPR), providing a molecular explanation for the different susceptibility to rotavirus infection between secretor and non-secretor individuals. The unexpected interaction of P[8] VP8* with LNB, a building block of type-1 human milk oligosaccharides, resulted in inhibition of rotavirus infection, highlighting the role and possible application of this disaccharide as an antiviral. While key amino acids in the H1/LNB binding pocket were highly conserved in members of the P[II] genogroup, differences were found in ligand affinities among distinct P[8] genetic lineages. The variation in affinities were explained by subtle structural differences induced by amino acid changes in the vicinity of the binding pocket, providing a fine-tuning mechanism for glycan binding in P[8] rotavirus.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Antígenos Virais/química , Proteínas de Ligação a RNA/química , Rotavirus/química , Proteínas não Estruturais Virais/química , Sítios de Ligação , Proteínas do Capsídeo/química , Linhagem Celular , Cristalografia por Raios X , Humanos
13.
Front Microbiol ; 9: 1917, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177920

RESUMO

Members of the genus Lactobacillus are commonly found at the gastrointestinal tract and other mucosal surfaces of humans. This genus includes various species with a great number of potentially probiotic bacteria. Other often-used probiotic species belong to Bifidobacterium, a genus almost exclusively associated with the gut. As probiotics must survive and be metabolically active at their target sites, namely host mucosal surfaces, consumption of host-produced glycans is a key factor for their survival and activity. The ability to metabolize glycans such as human milk oligosaccharides (HMOs), glycosaminoglycans and the glycan moieties of glycoproteins and glycolipids found at the mucosal surfaces grants a competitive advantage to lactobacilli and bifidobacteria. The analyses of the great number of sequenced genomes from these bacteria have revealed that many of them encode a wide assortment of genes involved in the metabolism and transport of carbohydrates, including several glycoside hydrolases required for metabolizing the carbohydrate moieties of mucins and HMOs. Here, the current knowledge on the genetic mechanisms, known catabolic pathways and biochemical properties of enzymes involved in the utilization of host-produced glycans by lactobacilli and bifidobacteria will be summarized.

14.
Sci Rep ; 8(1): 7152, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740087

RESUMO

The lactose operon (lacTEGF) from Lactobacillus casei strain BL23 has been previously studied. The lacT gene codes for a transcriptional antiterminator, lacE and lacF for the lactose-specific phosphoenolpyruvate: phosphotransferase system (PTSLac) EIICB and EIIA domains, respectively, and lacG for the phospho-ß-galactosidase. In this work, we have shown that L. casei is able to metabolize N-acetyllactosamine (LacNAc), a disaccharide present at human milk and intestinal mucosa. The mutant strains BL153 (lacE) and BL155 (lacF) were defective in LacNAc utilization, indicating that the EIICB and EIIA of the PTSLac are involved in the uptake of LacNAc in addition to lactose. Inactivation of lacG abolishes the growth of L. casei in both disaccharides and analysis of LacG activity showed a high selectivity toward phosphorylated compounds, suggesting that LacG is necessary for the hydrolysis of the intracellular phosphorylated lactose and LacNAc. L. casei (lacAB) strain deficient in galactose-6P isomerase showed a growth rate in lactose (0.0293 ± 0.0014 h-1) and in LacNAc (0.0307 ± 0.0009 h-1) significantly lower than the wild-type (0.1010 ± 0.0006 h-1 and 0.0522 ± 0.0005 h-1, respectively), indicating that their galactose moiety is catabolized through the tagatose-6P pathway. Transcriptional analysis showed induction levels of the lac genes ranged from 130 to 320-fold in LacNAc and from 100 to 200-fold in lactose, compared to cells growing in glucose.


Assuntos
Amino Açúcares/metabolismo , Óperon Lac/genética , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Proliferação de Células/genética , Galactose/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Lactose/metabolismo , Leite Humano/microbiologia , Oligossacarídeos/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo
15.
Appl Microbiol Biotechnol ; 101(1): 205-215, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27714445

RESUMO

Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-ß-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-ß-D-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for ß1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-ß-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants.


Assuntos
Dissacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Mucosa Intestinal/metabolismo , Lactobacillus/metabolismo , Leite Humano/metabolismo , Prebióticos , Acetilgalactosamina/metabolismo , Acetilglucosamina/metabolismo , Dissacarídeos/química , Glicosilação , Cinética , Lactobacillus/enzimologia , Espectroscopia de Ressonância Magnética , Hibridização de Ácido Nucleico
16.
Int J Food Microbiol ; 216: 18-24, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26384212

RESUMO

Phytases are enzymes capable of sequentially dephosphorylating phytic acid to products of lower chelating capacity and higher solubility, abolishing its inhibitory effect on intestinal mineral absorption. Genetic constructions were made for expressing two phytases from bifidobacteria in Lactobacillus casei under the control of a nisin-inducible promoter. L. casei was able of producing, exporting and anchoring to the cell wall the phytase of Bifidobacterium pseudocatenulatum. The phytase from Bifidobacterium longum spp. infantis was also produced, although at low levels. L. casei expressing any of these phytases completely degraded phytic acid (2mM) to lower myo-inositol phosphates when grown in MRS medium. Owing to the general absence of phytase activity in lactobacilli and to the high phytate content of whole grains, the constructed L. casei strains were applied as starter in a bread making process using whole-grain flour. L. casei developed in sourdoughs by fermenting the existing carbohydrates giving place to an acidification. In this food model system the contribution of L. casei strains expressing phytases to phytate hydrolysis was low, and the phytate degradation was mainly produced by activation of the cereal endogenous phytase as a consequence of the drop in pH. This work shows the capacity of lactobacilli to be modified in order to produce enzymes with relevance in food technology processes. The ability of these strains in reducing the phytate content in fermented food products must be evaluated in further models.


Assuntos
6-Fitase/genética , Bifidobacterium/metabolismo , Pão/microbiologia , Lacticaseibacillus casei/metabolismo , Ácido Fítico/metabolismo , 6-Fitase/metabolismo , Bifidobacterium/enzimologia , Bifidobacterium/genética , Metabolismo dos Carboidratos/genética , Grão Comestível/metabolismo , Fermentação , Farinha/análise , Manipulação de Alimentos , Tecnologia de Alimentos/métodos , Hidrólise , Lacticaseibacillus casei/genética
17.
Appl Environ Microbiol ; 82(2): 570-7, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546429

RESUMO

Human milk oligosaccharides (HMOs) are considered to play a key role in establishing and maintaining the infant gut microbiota. Lacto-N-triose forms part of both type 1 and type 2 HMOs and also of the glycan moieties of glycoproteins. Upstream of the previously characterized gene cluster involved in lacto-N-biose and galacto-N-biose metabolism from Lactobacillus casei BL23, there are two genes, bnaG and manA, encoding a ß-N-acetylglucosaminidase precursor and a mannose-6-phosphate isomerase, respectively. In this work, we show that L. casei is able to grow in the presence of lacto-N-triose as a carbon source. Inactivation of bnaG abolished the growth of L. casei on this oligosaccharide, demonstrating that BnaG is involved in its metabolism. Interestingly, whole cells of a bnaG mutant were totally devoid of ß-N-acetylglucosaminidase activity, suggesting that BnaG is an extracellular wall-attached enzyme. In addition to hydrolyzing lacto-N-triose into N-acetylglucosamine and lactose, the purified BnaG enzyme also catalyzed the hydrolysis of 3'-N-acetylglucosaminyl-mannose and 3'-N-acetylgalactosaminyl-galactose. L. casei can be cultured in the presence of 3'-N-acetylglucosaminyl-mannose as a carbon source, but, curiously, the bnaG mutant strain was not impaired in its utilization. These results indicate that the assimilation of 3'-N-acetylglucosaminyl-mannose is independent of BnaG. Enzyme activity and growth analysis with a manA-knockout mutant showed that ManA is involved in the utilization of the mannose moiety of 3'-N-acetylglucosaminyl-mannose. Here we describe the physiological role of a ß-N-acetylglucosaminidase in lactobacilli, and it supports the metabolic adaptation of L. casei to the N-acetylglucosaminide-rich gut niche.


Assuntos
Acetilglucosaminidase/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Lacticaseibacillus casei/enzimologia , Leite Humano/microbiologia , Trissacarídeos/metabolismo , Acetilglucosaminidase/genética , Proteínas de Bactérias/genética , Parede Celular/genética , Humanos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/crescimento & desenvolvimento , Lacticaseibacillus casei/metabolismo , Leite Humano/metabolismo , Oligossacarídeos/metabolismo
18.
Appl Microbiol Biotechnol ; 99(17): 7165-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25977209

RESUMO

Fucosyl-N-acetylglucosamine disaccharides are important core structures that form part of human mucosal and milk glyco-complexes. We have previously shown that AlfB and AlfC α-L-fucosidases from Lactobacillus casei are able to synthesize fucosyl-α-1,3--N-acetylglucosamine (Fuc-α1,3-GlcNAc) and fucosyl-α-1,6-N-acetylglucosamine (Fuc-α1,6-GlcNAc), respectively, in transglycosylation reactions. Here, these reactions were performed in a semipreparative scale, and the produced disaccharides were purified. The maximum yields obtained of Fuc-α1,3-GlcNAc and Fuc-α1,6-GlcNAc were 4.2 and 9.3 g/l, respectively. The purified fucosyl-disaccharides were then analyzed for their prebiotic effect in vitro using strains from the Lactobacillus casei/paracasei/rhamnosus group and from Bifidobacterium species. The results revealed that 6 out of 11 L. casei strains and 2 out of 6 L. rhamnosus strains tested were able to ferment Fuc-α1,3-GlcNAc, and L. casei BL87 and L. rhamnosus BL327 strains were also able to ferment Fuc-α1,6-GlcNAc. DNA hybridization experiments suggested that the metabolism of Fuc-α1,3-GlcNAc in those strains relies in an α-L-fucosidase homologous to AlfB. Bifidobacterium breve and Bibidobacterium pseudocatenolatum species also metabolized Fuc-α1,3-GlcNAc. Notably, L-fucose was excreted from all the Lactobacillus and Bifidobacterium strains fermenting fucosyl-disaccharides, except from strains L. rhamnosus BL358 and BL377, indicating that in these latest strains, L-fucose was catabolized. The fucosyl-disaccharides were also tested for their inhibitory potential of pathogen adhesion to human colon adenocarcinoma epithelial (HT29) cell line. Enteropathogenic Escherichia coli (EPEC) strains isolated from infantile gastroenteritis were used, and the results showed that both fucosyl-disaccharides inhibited adhesion to different extents of certain EPEC strains to HT29 cells in tissue culture.


Assuntos
Acetilglucosamina/análogos & derivados , Aderência Bacteriana/efeitos dos fármacos , Bifidobacterium/metabolismo , Dissacarídeos/metabolismo , Escherichia coli/efeitos dos fármacos , Lacticaseibacillus casei/metabolismo , Prebióticos/administração & dosagem , Acetilglucosamina/isolamento & purificação , Acetilglucosamina/metabolismo , Bifidobacterium/genética , Linhagem Celular , Dissacarídeos/isolamento & purificação , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Fermentação , Humanos , Lacticaseibacillus casei/genética , Hibridização de Ácido Nucleico , Homologia de Sequência
19.
Appl Environ Microbiol ; 81(11): 3880-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25819967

RESUMO

L-Fucose is a sugar present in human secretions as part of human milk oligosaccharides, mucins, and other glycoconjugates in the intestinal epithelium. The genome of the probiotic Lactobacillus rhamnosus GG (LGG) carries a gene cluster encoding a putative L-fucose permease (fucP), L-fucose catabolic pathway (fucI, fucK, fucU, and fucA), and a transcriptional regulator (fucR). The metabolism of L-fucose in LGG results in 1,2-propanediol production, and their fucI and fucP mutants displayed a severe and mild growth defect on L-fucose, respectively. Transcriptional analysis revealed that the fuc genes are induced by L-fucose and subject to a strong carbon catabolite repression effect. This induction was triggered by FucR, which acted as a transcriptional activator necessary for growth on L-fucose. LGG utilized fucosyl-α1,3-N-acetylglucosamine and contrarily to other lactobacilli, the presence of fuc genes allowed this strain to use the L-fucose moiety. In fucI and fucR mutants, but not in fucP mutant, L-fucose was not metabolized and it was excreted to the medium during growth on fucosyl-α1,3-N-acetylglucosamine. The fuc genes were induced by this fucosyl-disaccharide in the wild type and the fucP mutant but not in a fucI mutant, showing that FucP does not participate in the regulation of fuc genes and that L-fucose metabolism is needed for FucR activation. The l-fucose operon characterized here constitutes a new example of the many factors found in LGG that allow this strain to adapt to the gastrointestinal conditions.


Assuntos
Fucose/biossíntese , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/fisiologia , Redes e Vias Metabólicas , Óperon , Propilenoglicol/metabolismo , Adaptação Fisiológica , Meios de Cultura/química , Trato Gastrointestinal/microbiologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Probióticos
20.
Gut Microbes ; 5(4): 522-32, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25144609

RESUMO

The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth parasites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the host immune system to reside in the intestinal environment, yet whether they influence each other's persistence in the host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with the mouse intestinal nematode parasite, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously characterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bacteria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mechanism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite has important implications for both antibiotic and anthelmintic use in endemic human populations.


Assuntos
Trato Gastrointestinal/microbiologia , Lactobacillus/fisiologia , Interações Microbianas , Nematospiroides dubius/fisiologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Trato Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nematospiroides dubius/crescimento & desenvolvimento , Nematospiroides dubius/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...