Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microencapsul ; 40(1): 53-66, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36649282

RESUMO

AIM: The aim of this study was preparation of a self-emulsifying drug delivery system (SEEDS) containing metformin hydrochloride. METHODS: Hydrophobic ion paired complexes were prepared by electrostatic interaction between metformin and sodium lauryl sulphate (SLS). The nanodroplets were optimised using two-level full factorial methodology and their morphology were examined. In vitro release of metformin from SEDDS was evaluated in simulated gastric and intestinal fluids. Finally, the ex-vivo efficacy of the optimised formulation in enhancing the intestinal permeability of metformin was evaluated using non-everted intestinal sac. RESULTS: The data revealed that in weight ratio 1:4(metformin: SLS), the highest recovery was achieved. The physico-chemical properties of the optimised nano-droplets including size, polydispersity index (PdI), zeta potential, and loading efficiency (%) were 192.33 ± 9.9 nm, 0.275 ± 0.051; -1.52 mV, and 93.75 ± 0.77% (w/w), respectively. CONCLUSIONS: The data obtained from the intestinal transport study demonstrated that SEDDS can significantly enhance the oral permeability of the compound.


Assuntos
Metformina , Emulsões/química , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Dodecilsulfato de Sódio , Administração Oral , Solubilidade , Emulsificantes/química
2.
Adv Pharm Bull ; 11(2): 301-310, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33880352

RESUMO

Purpose: Propolis is a resinous material obtained by honeybees with many biological and pharmacological properties which can be used for treatment of various diseases. Current study aims to formulate and characterize propolis-loaded solid lipid nanoparticles (SLNs) carrier system. Methods: The prepared SLNs, composed of glyceryl monostearate (GMS), Soy lecithin, Tween 80 and polyethylene glycol 400 (PEG 400), were fabricated employing solvent emulsification-evaporation technique. In addition, the impact of several variables including concentration ratios of GMS/Soy lecithin and PEG 400/Tween 80 along with emulsification time were evaluated on the size, polydispersity index (PDI) and zeta potential of particles. SLN formulations were optimized using Box-Behnken design. The particles were freeze dried and morphologically studied by scanning electron microscopy (SEM). The in-vitro release profile of propolis entrapped in the optimized nanoparticles was investigated. Results: The mean particle size, PDI, zeta potential, entrapment efficiency (EE) and loading efficiency (LE) of optimized propolis-loaded SLNs were found to be 122.6±22.36 nm, 0.28±0.06, -26.18±3.3 mV, 73.57±0.86% and 3.29±0.27%, respectively. SEM images exhibited nanoparticles to be non-aggregated and in spherical shape. The in-vitro release study showed prolonged release of propolis from nanoparticles. Conclusion: The results implied that the proposed way of SLN preparation could be considered as a proper method for production of propolis loaded colloidal carrier system.

3.
Iran J Pharm Res ; 19(3): 45-62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33680009

RESUMO

The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSPG). The SLN formulations containing AMB-DSPG complexes were prepared using glycerol monostearate (GMS) as the lipid matrix and soybean lecithin and tween 80 as the surfactants by solvent emulsification-evaporation technique. The nanoparticles were optimized through a fractional factorial design. DPIs were prepared by lyophilization technique using lactose as the inhalational carrier and then after, the formulations were evaluated in terms of aerodynamic particle size distribution using an Andersen cascade impactor. The morphology of the particles was examined using scanning electron microscopy (SEM) and in-vitro drug release profiles were evaluated. Following the statistical results, the particle size, Poly dispersity index (PdI), zeta potential, entrapment efficiency (EE%), and drug loading (DL%) of the optimized SLNs were 187.04 ± 11.97 nm, 0.188 ± 0.028, -30.16 ± 1.6 mV, 89.3 ± 3.47 % and 2.76 ± 0.32 %, respectively. Formulation containing 10% w/v of lactose with the calculated fine particle fraction value as 72.57 ± 4.33% exhibited the appropriate aerodynamic characteristics for pulmonary drug delivery. SEM images revealed de-agglomerated particles. In-vitro release studies showed sustained release of AMB from the carriers and the release kinetics were best fitted to the first order kinetic model.

4.
J Labelled Comp Radiopharm ; 59(1): 24-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26691104

RESUMO

Microsphere and particle technology with selective transport of radiation represents a new generation of therapeutics. Poly-L-lactic acid (PLLA) microspheres loaded with holmium-166 acetylacetonate ((166)Ho-PLLA-MS) are novel microdevices. In this research, (165)HoAcAc-PLLA microparticles were prepared by the solvent evaporation technique. Microspheres were irradiated at Tehran Research Reactor. The diameter and surface morphologies were characterized by particle sizer and scanning electron microscopy before and after irradiation. The complex stability, radiochemical purity, and in vivo biodistribiotion were checked in the final solution up to 3 days. In this study, (166)Ho-PLLA spherical particles with a smooth surface and diameter of 20-40 µm were obtained, which were stable in vitro and in vivo studies. Neutron irradiation did not damage the particles. The ease with which the PLLA spheres could be made in the optimal size range for later irradiation and their ability to retain the (166)Ho provided good evidence for their potential use in radioembolization.


Assuntos
Hólmio/química , Ácido Láctico/química , Microesferas , Polímeros/química , Compostos Radiofarmacêuticos/síntese química , Animais , Hidroxibutiratos/química , Pentanonas/química , Poliésteres , Radioisótopos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...