Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451704

RESUMO

HC-Pro and CP genes of a potyvirus facilitate cell-to-cell movement and are involved in the systemic movement of the viruses. The interaction between HC-Pro and CP is mandatory for aphid transmission. Two turnip mosaic virus (TuMV) isolates, RC4 and YC5, were collected from calla lily plants in Taiwan. The virus derived from the infectious clone pYC5 cannot move systemically in Chenopodium quinoa plants and lacks aphid transmissibility in Nicotiana benthamiana plants, like the initially isolated virus. Sequence analysis revealed that two amino acids P5 and A206, of YC5 CP uniquely differ from RC4 and other TuMV strains. Recombination assay and site-directed mutagenesis revealed that the fifth residue of leucine (L) at the N-terminal region of CP (TuMV-RC4), instead of proline (P) (TuMV-YC5), is critical to permit the systemic spread in C. quinoa plants. Moreover, the single substitution mutant YC5-CPP5L became aphid transmissible similar to RC4. Fluorescence microscopy revealed that YC5-GFP was restricted in the petioles of inoculated leaves, while YC5-CPP5L-GFP translocated through the petioles of inoculated leaves, main stem, and the petioles of upper uninoculated leaves of C. quinoa plants. In addition, YC5-GUS was blocked at the basal part of the petiole connecting to the main stem of the inoculated C. quinoa plants, while YC5-CPP5L-GFP translocated to the upper leaves. Thus, a single amino acid, the residue L5 at the N-terminal region right before the 6DAG8 motif, is critical for the systemic translocation ability of TuMV in a local-lesion host and for aphid transmissibility in a systemic host.

2.
Phytopathology ; : PHYTO07230227R, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37913633

RESUMO

Plant viruses produce particular suppressors to antagonize the host defense response of RNA silencing to establish infection. Cucurbit chlorotic yellows virus (CCYV), a member of the genus Crinivirus of the family Closteroviridae, severely damages the production of economically essential cucurbits worldwide. Here, we used the attenuated zucchini yellow mosaic virus (ZYMV) vector ZAC to express individual coding sequences, including CP, CPm, P25, and P22, of a Taiwan CCYV isolate (CCYV-TW) to identify their possible roles as pathogenicity determinants. ZAC is an HC-Pro function mutant that lacks the ability of local lesion induction on Chenopodium quinoa leaves and induces mild mottling followed by recovery on its natural host zucchini squash plants. Only the recombinant expressing CCYV-TW P22 complemented the effect of ZAC HC-Pro dysfunction, causing more severe symptoms on zucchini squash plants and restoring lesion formation on C. quinoa leaves, with lesions forming faster than those generated by the wild-type ZYMV. This suggests that CCYV-TW P22 is a virulence enhancer. Sequence analysis of criniviral P22s revealed the presence of four conserved leucine residues (L10, L17, L84, and L127) and one conserved lysine residue (K185). The five P22 residues conserved among the CCYV isolates and the P22 orthologs of two other criniviruses were each substituted with alanine in CCYV-TW P22 to investigate its ability to suppress RNA silencing and pathogenicity. The results provide new insights into CCYV-P22, showing that the L127 residue of P22 is indispensable for maintaining its stability in RNA silencing suppression and essential for virulence enhancement.

3.
Mol Plant Pathol ; 24(8): 973-988, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158451

RESUMO

Zucchini yellow mosaic virus (ZYMV) seriously damages cucurbits worldwide. Control of ZYMV by cross-protection has been practised for decades, but selecting useful mild viruses is time-consuming and laborious. Most attenuated potyviruses used for cross-protection do not induce hypersensitive reaction (HR) in Chenopodium quinoa, a local lesion host Chenopodium quinoa. Here, severe ZYMV TW-TN3 tagged with green fluorescent protein (GFP), designated ZG, was used for nitrous acid mutagenesis. From three trials, 11 mutants were identified from fluorescent spots without HR in inoculated C. quinoa leaves. Five mutants caused attenuated symptoms in squash plants. The genomic sequences of these five mutants revealed that most of the nonsynonymous changes were located in the HC-Pro gene. The replacement of individual mutated HC-Pros in the ZG backbone and an RNA silencing suppression (RSS) assay indicated that each mutated HC-Pro is defective in RSS function and responsible for reduced virulence. Four mutants provided high degrees of protection (84%-100%) against severe virus TW-TN3 in zucchini squash plants, with ZG 4-10 being selected for removal of the GFP tag. After removal of the GFP gene, Z 4-10 induced symptoms similar to ZG 4-10 and still provided 100% protection against TW-TN3 in squash, thus is considered not a genetically engineered mutant. Therefore, using a GFP reporter to select non-HR mutants of ZYMV from C. quinoa leaves is an efficient way to obtain beneficial mild viruses for cross-protection. This novel approach is being applied to other potyviruses.


Assuntos
Cucurbita , Potyvirus , Ácido Nitroso , Potyvirus/genética , Mutagênese , Interferência de RNA
4.
Phytopathology ; 113(8): 1605-1614, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37019906

RESUMO

Passiflora mottle virus (PaMoV), an aphid-borne potyvirus, is the primary causal virus of devastating passionfruit woodiness disease in Vietnam. Here we generated a nonpathogenic, attenuated PaMoV strain for disease control by cross protection. A full-length genomic cDNA of PaMoV strain DN4 from Vietnam was constructed to generate an infectious clone. The green fluorescent protein was tagged at the N-terminal region of the coat protein gene to monitor in planta the severe PaMoV-DN4. Two amino acids within the conserved motifs of helper component protease (HC-Pro) of PaMoV-DN4 were mutated individually or in combination as K53E or/and R181I. Mutants PaMoV-E53 and PaMoV-I181 induced local lesions in Chenopodium quinoa plants, while PaMoV-E53I181 caused infection without apparent symptoms. In passionfruit (Passiflora edulis) plants, PaMoV-E53 elicited severe leaf mosaic and PaMoV-I181 induced leaf mottling, while PaMoV-E53I181 caused transient mottling followed by symptomless recovery. PaMoV-E53I181 was stable after six serial passages in yellow passionfruit (Passiflora edulis f. flavicarpa) plants. Its temporal accumulation levels were lower than those of the wild type, with a zigzag accumulation pattern, typical of a beneficial protective virus. An RNA silencing suppression (RSS) assay revealed that all three mutated HC-Pros are defective in RSS. Triplicated cross-protection experiments with a total of 45 plants showed that the attenuated mutant PaMoV-E53I181 provided a high protection rate (91%) against the homologous wild-type virus in passionfruit plants. This work revealed that PaMoV-E53I181 can be used as a protective virus to control PaMoV by cross protection.

5.
Phytopathology ; 113(8): 1583-1594, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36935377

RESUMO

The application of attenuated viruses has been widely practiced for protecting crops from infection by related severe strains of the same species. Papaya ringspot virus W-type (PRSV W) and zucchini yellow mosaic virus (ZYMV) devastate cucurbits worldwide. However, the prevailing of these two viruses in cucurbits cannot be prevented by a single protective virus. In this study, we disclosed that co-infection of horn melon plants by two mild strains, PRSV P-type (PRSV P) HA5-1 and ZYMV-ZAC (a previously developed mild mutant of ZYMV) confers concurrent protection against PRSV P and ZYMV. Consequently, mild mutants of PRSV W were created by site-directed mutagenesis through modifications of the pathogenicity motifs FRNK and PD in helper component-protease (HC-Pro). A stable PRSV W mutant WAC (PRSV-WAC) with R181I and D397N mutations in HC-Pro was generated, inducing mild mottling, followed by symptomless recovery in cucurbits. Horn melon plants pre-infected by PRSV-WAC and ZYMV-ZAC showed no apparent interference on viral accumulation with no synergistic effects on symptoms. An agroinfiltration assay of mixed HC-Pros of WACHC-Pro + ZACHC-Pro revealed no additive effect of RNA silencing suppression. PRSV-WAC or ZYMV-ZAC alone only antagonized a severe strain of homologous virus, while co-infection with these two mild strains provided complete protection against both PRSV W and ZYMV. Similar results were reproduced in muskmelon and watermelon plants, indicating the feasibility of a two-in-one vaccine for concurrent control of PRSV W and ZYMV in cucurbits.


Assuntos
Afídeos , Coinfecção , Cucurbitaceae , Potyvirus , Animais , Doenças das Plantas , Potyvirus/genética
6.
Mol Plant Microbe Interact ; 36(6): 345-358, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36794975

RESUMO

East Asian passiflora virus (EAPV) seriously affects passionfruit production in Taiwan and Vietnam. In this study, an infectious clone of the EAPV Taiwan strain (EAPV-TW) was constructed, and EAPV-TWnss, with an nss tag attached to its helper component-protease (HC-Pro), was generated for monitoring the virus. Four conserved motifs of EAPV-TW HC-Pro were manipulated to create single mutations of F8I (simplified as I8), R181I (I181), F206L (L206), and E397N (N397) and double mutations of I8I181, I8L206, I8N397, I181L206, I181N397, and L206N397. Four mutants, EAPV I8I181, I8N397, I181L206, and I181N397, infected Nicotiana benthamiana and yellow passionfruit plants without conspicuous symptoms. Mutants EAPV I181N397 and I8N397 were stable after six passages in yellow passionfruit plants and expressed a zigzag pattern of accumulation dynamic, typical of beneficial protective viruses. An agroinfiltration assay indicated that the RNA silencing suppression capabilities of the four double mutated HC-Pros are significantly reduced. Mutant EAPV I181N397 accumulated the highest level of the small interfering RNA at 10 days postinoculation (dpi) in N. benthamiana plants, then dropped to background levels after 15 dpi. In both N. benthamiana and yellow passionfruit plants, EAPV I181N397 conferred complete cross protection (100%) against severe EAPV-TWnss, as defined by no severe symptoms and absence of the challenge virus, checked by Western blotting and reverse transcription PCR. Mutant EAPV I8N397 provided high degrees of complete protection against EAPV-TWnss in yellow passionfruit plants (90%) but not in N. benthamiana plants (0%). Both mutants showed complete protection (100%) against the Vietnam severe strain EAPV-GL1 in passionfruit plants. Thus, the mutants EAPV I181N397 and I8N397 have excellent potential for controlling EAPV in Taiwan and Vietnam. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteção Cruzada , Passiflora , Doenças das Plantas , Potyvirus , Passiflora/virologia , Potyvirus/genética , Interferência de RNA , Nicotiana , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia
7.
Plant Dis ; 107(6): 1757-1768, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36401850

RESUMO

Cross protection application of HA5-1, an attenuated mutant of papaya ringspot virus (PRSV) HA strain from Hawaii, was withdrawn from Taiwan due to the narrow geographic strain specificity of HA5-1. Here, to overcome this problem, we created attenuated mutants of PRSV YK, a dominant severe strain from Taiwan, by mutating helper component protease (HC-Pro) at F7, R181, F206, and D397 residues critical for potyviral pathogenicity. PRSV YK HC-Pro R181I, F206L, and D397N single-mutant viruses induced mild symptoms, but their adverse effects on growth of papaya plants disqualified them as useful protective viruses. However, F7I single-mutant and F7I + F206L double-mutant viruses displayed mild symptoms followed by recovery, and they showed a zigzag pattern of accumulation in papaya plants, indicating their potential to trigger RNA silencing and retain partial antagonistic suppression of host defense. Although F7I + R181I and F7I + D397N double-mutant viruses caused symptomless infection, they accumulated barely above mock level and, thus, were not qualified as proper protective viruses. RNA silencing suppression (RSS) analysis by agroinfiltration in Nicotiana benthamiana plants revealed that the HC-Pro F7I and F7I + F206L mutant proteins were weaker in RSS ability than the wild-type protein. Under greenhouse conditions, F7I and F7I + F206L mutant viruses were genetically stable but not aphid transmissible. Compared with the HA5-1 mutant's low degree (10%) of protection to papaya plants, the F7I and F7I + F206L mutants provided complete (100%) protection to papaya and horn melon plants against strain YK. Thus, F7I and F7I + F206L mutants solve the problem of strain-specific protection and have great potential for control of PRSV in Taiwan.


Assuntos
Proteção Cruzada , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Cisteína Endopeptidases/metabolismo
8.
Phytopathology ; 113(2): 334-344, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36129763

RESUMO

Papaya (Carica papaya) production is seriously limited by papaya ringspot virus (PRSV) worldwide, including in Vietnam. Control of PRSV by cross protection is dependent on the availability of effective mild strains. Here, an infectious cDNA clone was constructed from PRSV isolate TG5 from South Vietnam. Site-directed mutagenesis with point mutations on the essential motifs of the helper component proteinase (HC-Pro) was performed, with or without deleting five amino acids (d5) from its N-terminal region. Mutants TG-d5, TG-d5I7, and TG-d5L206 containing d5, d5 + F7I, and d5 + F206L, respectively, induced mild mottling followed by symptomless recovery on papaya and infected Chenopodium quinoa without lesion formation. Each mutant accumulated in papaya at reduced levels with a zigzag pattern and was stable beyond six monthly passages. The cross-protection effectiveness of the three mutants in papaya against TG5 was investigated, each with 60 plants from three independent trials. The results showed that each mutant provided complete protection (100%) against TG5, 1 month after the challenge inoculation, as verified by the lack of severe symptoms and lack of local lesions in C. quinoa. Further tests revealed that TG-d5I7 also confers high levels of protection against other severe PRSV isolates from South Vietnam, including isolates DN (97%) and ST2 (50%). However, TG-d5I7 is ineffective or less effective (0 to 33%) against seven other severe PRSV strains from different geographic origins, including the isolate HN from North Vietnam. Our results indicate that the protection by the three mutants is highly strain-specific and suitable for the control of PRSV in South Vietnam.


Assuntos
Carica , Potyvirus , Peptídeo Hidrolases/metabolismo , Vietnã , Proteção Cruzada , Doenças das Plantas/prevenção & controle , Potyvirus/genética , Gerenciamento Clínico
9.
Mol Plant Pathol ; 23(7): 947-965, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35285990

RESUMO

Control of plant viruses by cross-protection is limited by the availability of effective protective strains. Incorporation of an NIa-protease processing site in the extreme N-terminal region of the helper component protease (HC-Pro) of turnip mosaic virus (TuMV) resulted in a mutant virus TuHND I that induced highly attenuated symptoms. Recombination analysis verified that two variations, F7I mutation and amino acid 7-upstream-deletion, in HC-Pro co-determined TuHND I attenuation. TuHND I provided complete protection to Nicotiana benthamiana and Brassica campestris subsp. chinensis plants against infection by the severe parental strain. Aphid transmission tests revealed that TuHND I was not aphid-transmissible. An RNA silencing suppression (RSS) assay by agroinfiltration suggested the RSS-defective nature of the mutant HC-Pro. In the context (amino acids 3-17) encompassing the two variations of HC-Pro, we uncovered an FWKG-α-helix 1 (αH1) element that influenced the functions of aphid transmission and RSS, whose motifs were located far downstream. We further demonstrated that HC-Pro F7 was a critical residue on αH1 for HC-Pro functions and that reinstating αH1 in the RSS-defective HC-Pro of TuHND I restored the protein's RSS function. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated the FWKG-αH1 element as an integral part of the HC-Pro self-interaction domain. The possibility of regulation of the mechanistically independent functions of RSS and aphid transmission by the FWKG-αH1 element is discussed. Extension of TuMV HC-Pro FWKG-αH1 variations to another potyvirus, zucchini yellow mosaic virus, also generated nonaphid-transmissible cross-protective mutant viruses. Hence, the modification of the FWKG-αH1 element can generate effective attenuated viruses for the control of potyviruses by cross-protection.


Assuntos
Afídeos , Potyvirus , Animais , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Doenças das Plantas/prevenção & controle , Potyvirus/fisiologia , Proteínas Virais
10.
Phytopathology ; 112(3): 708-719, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34384243

RESUMO

Papaya ringspot virus (PRSV) causes severe damage to papaya (Carica papaya L.) and is the primary limiting factor for papaya production worldwide. A nitrous acid-induced mild strain, PRSV HA 5-1, derived from Hawaii strain HA, has been applied to control PRSV by cross-protection for decades. However, the problem of strain-specific protection hampers its application in Taiwan and other geographic regions outside Hawaii. Here, sequence comparison of the genomic sequence of HA 5-1 with that of HA revealed 69 nucleotide changes, resulting in 31 aa changes, of which 16 aa are structurally different. The multiple mutations of HA 5-1 are considered to result from nitrous acid induction because 86% of nucleotide changes are transition mutations. The stable HA 5-1 was used as a backbone to generate recombinants carrying individual 3' fragments of Vietnam severe strain TG5, including NIa, NIb, and CP3' regions, individually or in combination. Our results indicated that the best heterologous fragment for the recombinant is the region of CP3', with which symptom attenuation of the recombinant is like that of HA 5-1. This mild recombinant HA51/TG5-CP3' retained high levels of protection against the homologous HA in papaya plants and significantly increased the protection against the heterologous TG-5. Similarly, HA 5-1 recombinants carrying individual CP3' fragments from Thailand SMK, Taiwan YK, and Vietnam ST2 severe strains also significantly increase protection against the corresponding heterologous strains in papaya plants. Thus, our recombinant approach for mild strain generation is a fast and effective way to minimize the problem of strain-specific protection.


Assuntos
Carica , Potyvirus , Doenças das Plantas/prevenção & controle , Potyvirus/genética , Taiwan
11.
PLoS One ; 16(10): e0258298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34637470

RESUMO

Papaya ringspot virus biotype-P is a detrimental pathogen of economically important papaya and cucurbits worldwide. The mutation prone feature of this virus perhaps accounts for its geographical dissemination. In this study, investigations of the atypical PRSV-P strain was conducted based on phylogenetic, recombination and genetic differentiation analyses considering of it's likely spread across India and Bangladesh. Full length genomic sequences of 38 PRSV isolates and 35 CP gene sequences were subjected to recombination analysis. A total of 61 recombination events were detected in aligned complete PRSV genome sequences. 3 events were detected in complete genome of PRSV strain PK whereas one was in its CP gene sequence. The PRSV-PK appeared to be recombinant of a major parent from Bangladesh. However, the genetic differentiation based on full length genomic sequences revealed less frequent gene flow between virus PRSV-PK and the population from America, India, Colombia, other Asian Countries and Australia. Whereas, frequent gene flow exists between Pakistan and Bangladesh virus populations. These results provided evidence correlating geographical position and genetic distances. We speculate that the genetic variations and evolutionary dynamics of this virus may challenge the resistance developed in papaya against PRSV and give rise to virus lineage because of its atypical emergence where geographic spread is already occurring.


Assuntos
Carica/genética , Carica/virologia , Evolução Molecular , Variação Genética , Doenças das Plantas/genética , Potyvirus/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Fluxo Gênico , Genoma Viral , Funções Verossimilhança , Filogenia , Recombinação Genética , Estatística como Assunto
12.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445289

RESUMO

The NSs protein and the nucleocapsid protein (NP) of orthotospoviruses are the major targets for serological detection and diagnosis. A common epitope of KFTMHNQIF in the NSs proteins of Asia orthotospoviruses has been applied as an epitope tag (nss-tag) for monitoring recombinant proteins. In this study, a monoclonal antibody TNP MAb against the tomato spotted wilt virus (TSWV) NP that reacts with TSWV-serogroup members of Euro-America orthotospoviruses was produced. By truncation and deletion analyses of TSWV NP, the common epitope of KGKEYA was identified and designated as the np sequence. The np sequence was successfully utilized as an epitope tag (np-tag) to monitor various proteins, including the green fluorescence protein, the coat protein of the zucchini yellow mosaic virus, and the dust mite chimeric allergen Dp25, in a bacterial expression system. The np-tag was also applied to investigate the protein-protein interaction in immunoprecipitation. In addition, when the np-tag and the nss-tag were simultaneously attached at different termini of the expressed recombinant proteins, they reacted with the corresponding MAbs with high sensitivity. Here, we demonstrated that the np sequence and TNP MAb can be effectively applied for tagging and detecting proteins and can be coupled with the nss-tag to form a novel epitope-tagging system for investigating protein-protein interactions.


Assuntos
Mapeamento de Epitopos , Imuno-Histoquímica/métodos , Proteínas do Nucleocapsídeo/imunologia , Vírus de Plantas/imunologia , América , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Epitopos/análise , Epitopos/química , Europa (Continente) , Imunoprecipitação , Vírus do Mosaico/química , Vírus do Mosaico/classificação , Vírus do Mosaico/imunologia , Proteínas do Nucleocapsídeo/química , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Vírus de Plantas/química , Vírus de Plantas/classificação , Potyvirus/química , Potyvirus/imunologia , Coloração e Rotulagem/métodos , Tospovirus/química , Tospovirus/classificação , Tospovirus/imunologia
13.
PLoS One ; 16(3): e0247500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657150

RESUMO

Thrips and thrips-transmitted tospoviruses cause significant losses in crop yields worldwide. The melon thrips (Thrips palmi) is not only a pest of cucurbit crops, but also a vector that transmits tospoviruses, such as the watermelon silver mottle virus (WSMoV). Vector transmission of tospoviruses has been well studied in the tomato spotted wilt virus (TSWV)-Frankliniella occidentalis model system; however, until now the transmission mode of WSMoV by T. palmi has not been sufficiently examined. The results of the transmission assays suggest that T. palmi transmits WSMoV in a persistent manner, and that the virus is mainly transmitted by adults, having been ingested at the first-instar larval stage. Complementary RNAs corresponding to the NSm and NSs genes of WSMoV were detected in viruliferous thrips by reverse transcription-polymerase chain reaction; NSs protein was also detected in viruliferous thrips by western blotting, verifying the replication of WSMoV in T. palmi. Furthermore, we demonstrated that in thrips infected with WSMoV at the first-instar larval stage, the virus eventually infected various tissues of the adult thrips, including the primary salivary glands. Taken together, these results suggest that T. palmi transmits WSMoV in a persistent-propagative mode. The results of this study make a significant contribution to the understanding of the transmission biology of tospoviruses in general.


Assuntos
Citrullus/virologia , Doenças das Plantas/virologia , Tisanópteros/virologia , Tospovirus/genética , Animais , Feminino , Larva/virologia , Masculino , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândulas Salivares/virologia , Replicação Viral
14.
Phytopathology ; 111(9): 1675-1685, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33487021

RESUMO

Passionfruit plantings in Vietnam increased to 10,000 ha in 2019. However, outbreaks of passionfruit woodiness disease (PWD) have become a serious threat to production. In this study, five virus isolates (DN1, DN4, NA1, GL1, and GL2) were collected from different areas of Vietnam. Their causal roles in PWD were verified by back-inoculation to passionfruit. Analyses of coat protein (CP) and genomic sequences revealed that the GL1 isolate is closely related to East Asia Passiflora virus (EAPV) AO strain of Japan (polyprotein nt and aa identities of 98.1 and 98.2%, respectively), and the GL2 isolate is related to Telosma mosaic virus (TelMV) isolate PasFru, China (polyprotein nt and aa identities of 87.1 and 90.9%, respectively). CP comparison, host range, and cytological characterization indicated that DN1, DN4, and NA1 are potyviruses but are different from EAPV and TelMV. Phylogenic analyses of their CP and genome sequences indicated that these three isolates and the passionfruit severe mottle-associated virus Fujian isolate of China belong to a distinct clade, which does not meet the threshold (76% nt identity of polyprotein) to be regarded as any of potyviral species. Thus, a new species name, Passiflora mottle virus, (PaMoV), has been proposed by the International Committee on Taxonomy of Viruses. A rabbit antiserum was produced against the CP of DN1, and it can distinguish PaMoV from TelMV and EAPV in western blotting and enzyme-linked immunosorbent assay (ELISA) without cross-reactions. Field surveys of 240 samples by ELISA and reverse transcription PCR found that PWD in Vietnam is caused mainly by PaMoV, followed by EAPV, mixed infection of PaMoV and EAPV, and rare cases of TelMV.


Assuntos
Passiflora , Potyvirus , Animais , China , Doenças das Plantas , Potyvirus/genética , Coelhos , Vietnã
15.
Plant Dis ; 104(4): 1175-1182, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32065571

RESUMO

Chilli pepper (Capsicum annuum L.) is one of the most important crops in Yunnan Province, China. An orthotospovirus isolate 14YV855 was isolated from a diseased chilli pepper plant exhibiting yellow ringspots and necrosis on leaves in Shiping County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province in 2014. The complete genome sequence of 14YV855 was determined. The small, medium, and large RNAs are 3,428, 4,781, and 8,917 nucleotides long, respectively. The complete nucleocapsid (N) protein of 14YV855 shares a high amino acid identity of 84.8 to 89.9% to that of Capsicum chlorosis virus (CaCV), Groundnut bud necrosis virus (GBNV), Watermelon bud necrosis virus (WBNV), and Watermelon silver mottle virus (WSMoV), which is slightly less than the 90% identity threshold for the demarcation of new Orthotospovirus sp. Phylogenetic analyses revealed that the N protein and RNA-dependent RNA polymerase of 14YV855 are the most related to WSMoV, while the NSs, NSm, and Gn/Gc proteins are similar to those of GBNV. As expected, 14YV855 is serologically related to CaCV, GBNV, WBNV, and WSMoV when the monoclonal antibody against the N protein of WSMoV was used; however, 14YV855 can be distinguished from other orthotospoviruses by reverse-transcription PCR using the specific primers. Our results indicate that 14YV855 is a new Orthotospovirus sp. belonging to the WSMoV serogroup and is provisionally named Chilli yellow ringspot virus.


Assuntos
Capsicum , China , Filogenia , Doenças das Plantas , RNA Viral
16.
Mol Plant Microbe Interact ; 33(4): 637-652, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31935338

RESUMO

In orthotospovirus, the nonstructural protein S (NSs) is the RNA-silencing suppressor (RSS) and pathogenicity determinant. Here, we demonstrate that a putative α-helix, designated H8, spanning amino acids 338 to 369 of the C-terminal region of the NSs protein, is crucial for self-interaction of watermelon silver mottle virus NSs protein and that the H8 affects RSS function. Co-immunoprecipitation, yeast two-hybrid, and bimolecular fluorescence complementation analyses revealed that the triple point mutation (TPM) of H8 amino acids Y338A, H350A, and F353A resulted in NSs protein self-interaction dysfunction. Transient expression of H8-deleted (ΔH8) and TPM NSs proteins in Nicotiana benthamiana plants by agroinfitration indicated that these proteins have weaker RSS activity and are far less stable than wild-type (WT) NSs. However, an electrophoretic mobility assay revealed that small interfering RNA (siRNA) binding ability of TPM NSs protein is not compromised. The pathogenicity assay of WT NSs protein expressed by the attenuated turnip mosaic virus vector restored severe symptoms in recombinant-infected N. benthamiana plants but not for ΔH8 or TPM proteins. Taken together, we conclude that the H8 helix in the C-terminal region of NSs protein is crucial for stabilizing NSs protein through self-interaction to maintain normal functions of RSS and pathogenicity, but not for NSs-siRNA binding activity.


Assuntos
Proteína S , Estabilidade Proteica , Tospovirus , Proteínas não Estruturais Virais , Proteína S/química , Proteína S/genética , Interferência de RNA , Nicotiana/virologia , Tospovirus/química , Tospovirus/genética , Virulência/genética
17.
Mol Plant ; 13(2): 321-335, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31812689

RESUMO

In plants, RNA interference (RNAi) plays a pivotal role in growth and development, and responses to environmental inputs, including pathogen attack. The intercellular and systemic trafficking of small interfering RNA (siRNA)/microRNA (miRNA) is a central component in this regulatory pathway. Currently, little is known with regards to the molecular agents involved in the movement of these si/miRNAs. To address this situation, we employed a biochemical approach to identify and characterize a conserved SMALL RNA-BINDING PROTEIN 1 (SRBP1) family that mediates non-cell-autonomous small RNA (sRNA) trafficking. In Arabidopsis, AtSRBP1 is a glycine-rich (GR) RNA-binding protein, also known as AtGRP7, which we show binds single-stranded siRNA. A viral vector, Zucchini yellow mosaic virus (ZYMV), was employed to functionally characterized the AtSRBP1-4 (AtGRP7/2/4/8) RNA recognition motif and GR domains. Cellular-based studies revealed the GR domain as being necessary and sufficient for SRBP1 cell-to-cell movement. Taken together, our findings provide a foundation for future research into the mechanism and function of mobile sRNA signaling agents in plants.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Cucurbita/virologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/fisiologia , Domínios Proteicos , Motivo de Reconhecimento de RNA , RNA de Plantas/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
18.
Plant Dis ; 102(3): 600-607, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673497

RESUMO

The whitefly-transmitted tomato chlorosis virus (ToCV) belonging to the genus Crinivirus (family Closteroviridae) affects tomato production worldwide. ToCV was first recorded in Taiwan in 1998 affecting tomato production. In this study, a local virus isolate XS was obtained, after serial whitefly transmissions from a diseased tomato plant displaying general chlorosis were collected in central Taiwan. The whole genome sequence of XS was determined from cDNA fragments amplified by reverse transcription (RT)-PCR, first using the degenerate primers for viruses of Closteroviridae and followed by degenerate and specific primers designed on available sequences of the ToCV isolates. The nucleotide (nt) sequences of RNA-1 and RNA-2 of the XS shared low identities of 77.8 to 78% and 78 to 78.1%, respectively, with genome segments of other ToCV isolates. Nevertheless, the viral RNA-dependent RNA polymerase (RdRp), heat shock protein 70 homolog (Hsp70h), and major capsid protein (CP) shared 88.3 to 96.2% amino acid (aa) identities with other ToCV isolates, indicating that XS is a new strain of this virus. Phylogenetic analyses of these three proteins indicated that all ToCV isolates from different counties outside Taiwan are closely related and clustered in the same clade, whereas the XS isolate is distinct and forms a unique branch. A one tube RT-PCR assay using primers designed from the genomic sequence of the XS was able to detect the ToCV-XS in infected tomato plants and in individual whiteflies. A field survey during 2013 to 2016 revealed a high ToCV-XS prevalence of 60.5% in 172 tested tomato samples, demonstrating that ToCV-XS is becoming an emerging threat for tomato production in Taiwan.


Assuntos
Crinivirus/isolamento & purificação , Hemípteros/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Animais , Crinivirus/genética , DNA Complementar , Filogenia , Folhas de Planta/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taiwan
19.
Mol Plant Microbe Interact ; 31(1): 86-100, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29090655

RESUMO

The viral infection process is a battle between host defense response and pathogen antagonizing action. Several studies have established a tight link between the viral RNA silencing suppressor (RSS) and the repression of salicylic acid (SA)-mediated defense responses, nonetheless host factors directly linking an RSS and the SA pathway remains unidentified. From yeast two-hybrid analysis, we identified an interaction between the potyviral RSS helper-component proteinase (HCPro) and SA-binding protein SABP3. Co-localization and bimolecular fluorescence complementation analyses validated the direct in vivo interaction between Turnip mosaic virus (TuMV) HCPro and the Arabidopsis homologue of SABP3, AtCA1. Additionally, transient expression of TuMV HCPro demonstrated its ability to act as a negative regulator of AtCA1. When the plants of the AtCA1 knockout mutant line were inoculated with TuMV, our results indicated that AtCA1 is essential to restrict viral spreading and accumulation, induce SA accumulation, and trigger the SA pathway. Unexpectedly, the AtCA1 overexpression line also displayed a similar phenotype, suggesting that the constitutive expression of AtCA1 antagonizes the SA pathway. Taken together, our results depict AtCA1 as an essential regulator of SA defense responses. Moreover, the interaction of potyviral HCPro with this regulator compromises the SA pathway to weaken host defense responses and facilitate viral infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/virologia , Anidrases Carbônicas/metabolismo , Cisteína Endopeptidases/metabolismo , Inativação Gênica , Potyvirus/metabolismo , Ácido Salicílico/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Cisteína Endopeptidases/química , Fluorescência , Técnicas de Inativação de Genes , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Virais/química
20.
PLoS One ; 12(8): e0182425, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771638

RESUMO

Chenopodium quinoa is a natural local lesion host of numerous plant viruses, including tospoviruses (family Bunyaviridae). Groundnut chlorotic fan-spot tospovirus (GCFSV) has been shown to consistently induce local lesions on the leaves of C. quinoa 4 days post-inoculation (dpi). To reveal the whole genome of GCFSV and its interactions with C. quinoa, RNA-seq was performed to determine the transcriptome profiles of C. quinoa leaves. The high-throughput reads from infected C. quinoa leaves were used to identify the whole genome sequence of GCFSV and its single nucleotide polymorphisms. Our results indicated that GCFSV is a phylogenetically distinct tospovirus. Moreover, 27,170 coding and 29,563 non-coding sequences of C. quinoa were identified through de novo assembly, mixing reads from mock and infected samples. Several key genes involved in the modulation of hypersensitive response (HR) were identified. The expression levels of 4,893 deduced complete genes annotated using the Arabidopsis genome indicated that several HR-related orthologues of pathogenesis-related proteins, transcription factors, mitogen-activated protein kinases, and defense proteins were significantly expressed in leaves that formed local lesions. Here, we also provide new insights into the replication progression of a tospovirus and the molecular regulation of the C. quinoa response to virus infection.


Assuntos
Chenopodium/genética , Chenopodium/virologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno , Tospovirus/fisiologia , Transcriptoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Doenças das Plantas , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...