Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(7): 3336-3343, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30724949

RESUMO

The slow kinetics of ethanol oxidation reaction (EOR) has limited its widespread use for fuel cells. Bimetallic catalysts with optimized surface compositions can considerably govern rate-determining steps through selectivity for CH3COOH formation or by facilitating the adsorption of OHadsvia the bifunctional effect of an alloy to increase the EOR's kinetic rates. Here, we reported monodisperse ordered In-Pd nanoparticles as new bimetallic high-performance catalysts for EOR. In-Pd nanoparticles, i.e., In3Pd2 and In3Pd5 were prepared using arrested precipitation in solution, and their composition, structures, phase and crystallinity were confirmed using a variety of analyses including TEM, XPS, EDS and XRD. In-Pd nanoparticles were loaded on carbon black (Vulcan XC-72) as electrocatalysts for EOR in alkaline media. In3Pd2 and In3Pd5 nanoparticles exhibited 5.8 times and 4.0 times higher mass activities than commercial Pd/C, which showed that the presence of indium greatly boosts electrocatalytic reactivity for EOR of Pd catalysts. This performance is the best among those of bimetallic nanoparticles reported to date. Such high performance of In-Pd nanoparticles may be attributed to the following two reasons. First, In-Pd nanoparticles exhibited excellent CO anti-poison ability, as confirmed by CO striping experiments. Second, as revealed by DFT calculations of metals with OHads adsorption, In atoms on In3Pd2 surface exhibited the lowest energy (-1.659 eV) for OHads adsorption as compared to other common oxophilic metals including Sn, SnPt, Ag, Ge, Co, Pb, and Cu. We propose that the presence of indium sites promoted efficient free OH radical adsorption on indium sites and resulted in a faster reaction rate of acetate formation from acetaldehyde (the rate determining step for EOR on Pd sites). Finally, a single direct ethanol fuel cell (DEFC) with Pd/C anode was prepared. Compared to the results for a commercial Pd/C anode, the open circuit voltage (OCV) of In3Pd2/C improved by 0.25 V (from 0.64 to 0.89 V) and the power density improved by ∼80% (from 3.7 to 6.7 mW cm-2), demonstrating its practical uses as Pt or Pd catalyst alternatives for DEFC.

2.
Nanoscale Res Lett ; 11(1): 117, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26925865

RESUMO

In this study, we reported the synthesis of the two-dimensional (2D) nanocomposite of molybdenum disulfide and nitrogen-doped graphene oxide (MoS2/nGO) as a platinum-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy were used to examine the characteristics of the 2D nanocomposite of MoS2/nGO. The cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and the Tafel polarization measurements were carried out to examine the electrocatalytic abilities. XPS and Raman results showed the 2D behaviors of the prepared nanomaterials. HRTEM micrographs showed the direct evidence of the 2D nanocomposite of MoS2/nGO. The results of electrocatalytic examinations indicated the MoS2/nGO owning the low charge transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide on the electrolyte-electrode interface. The 2D nanocomposite of MoS2/nGO combined the advantages of the high specific surface of nGO and the plenty edge sites of MoS2 and showed the promoted properties different from those of their individual constituents to create a new outstanding property. The DSSC with MoS2/nGO nanocomposite CE showed a photovoltaic conversion efficiency (PCE) of 5.95 % under an illumination of AM 1.5 (100 mW/cm(2)), which was up to 92.2 % of the DSSC with the conventional platinum (Pt) CE (PCE = 6.43 %). These results reveal the potential of the MoS2/nGO nanocomposite in the use of low-cost, scalable, and efficient Pt-free CEs for DSSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...