Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847394

RESUMO

Molecules that facilitate targeted protein degradation (TPD) offer great promise as novel therapeutics. The human hepatic lectin asialoglycoprotein receptor (ASGR) is selectively expressed on hepatocytes. We have previously engineered an anti-ASGR1 antibody-mutant RSPO2 (RSPO2RA) fusion protein (called SWEETS) to drive tissue-specific degradation of ZNRF3/RNF43 E3 ubiquitin ligases, which achieved hepatocyte-specific enhanced Wnt signaling, proliferation, and restored liver function in mouse models, and an antibody-RSPO2RA fusion molecule is currently in human clinical trials. In the current study, we identified two new ASGR1- and ASGR1/2-specific antibodies, 8M24 and 8G8. High-resolution crystal structures of ASGR1:8M24 and ASGR2:8G8 complexes revealed that these antibodies bind to distinct epitopes on opposing sides of ASGR, away from the substrate-binding site. Both antibodies enhanced Wnt activity when assembled as SWEETS molecules with RSPO2RA through specific effects sequestering E3 ligases. In addition, 8M24-RSPO2RA and 8G8-RSPO2RA efficiently downregulate ASGR1 through TPD mechanisms. These results demonstrate the possibility of combining different therapeutic effects and degradation mechanisms in a single molecule.


Assuntos
Receptor de Asialoglicoproteína , Proteólise , Ubiquitina-Proteína Ligases , Via de Sinalização Wnt , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Receptor de Asialoglicoproteína/metabolismo , Animais , Camundongos , Cristalografia por Raios X , Hepatócitos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Peptídeos e Proteínas de Sinalização Intercelular
2.
iScience ; 27(6): 109938, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38832011

RESUMO

Wingless-related integration site or Wingless and Int-1 or Wingless-Int (WNT) signaling is crucial for embryonic development, and adult tissue homeostasis and regeneration, through its essential roles in cell fate, patterning, and stem cell regulation. The biophysical characteristics of WNT ligands have hindered efforts to interrogate ligand activity in vivo and prevented their development as therapeutics. Recent breakthroughs have enabled the generation of synthetic WNT signaling molecules that possess characteristics of natural ligands and potently activate the pathway, while also providing distinct advantages for therapeutic development and manufacturing. This review provides a detailed discussion of the protein engineering of these molecular platforms for WNT signaling agonism. We discuss the importance of WNT signaling in several organs and share insights from the initial application of these new classes of molecules in vitro and in vivo. These molecules offer a unique opportunity to enhance our understanding of how WNT signaling agonism promotes tissue repair, enabling targeted development of tailored therapeutics.

3.
Respir Res ; 25(1): 153, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566174

RESUMO

BACKGROUND: Wnt/ß-catenin signaling is critical for lung development and AT2 stem cell maintenance in adults, but excessive pathway activation has been associated with pulmonary fibrosis, both in animal models and human diseases such as idiopathic pulmonary fibrosis (IPF). IPF is a detrimental interstitial lung disease, and although two approved drugs limit functional decline, transplantation is the only treatment that extends survival, highlighting the need for regenerative therapies. METHODS: Using our antibody-based platform of Wnt/ß-catenin modulators, we investigated the ability of a pathway antagonist and pathway activators to reduce pulmonary fibrosis in the acute bleomycin model, and we tested the ability of a WNT mimetic to affect alveolar organoid cultures. RESULTS: A WNT mimetic agonist with broad FZD-binding specificity (FZD1,2,5,7,8) potently expanded alveolar organoids. Upon therapeutic dosing, a broad FZD-binding specific Wnt mimetic decreased pulmonary inflammation and fibrosis and increased lung function in the bleomycin model, and it impacted multiple lung cell types in vivo. CONCLUSIONS: Our results highlight the unexpected capacity of a WNT mimetic to effect tissue repair after lung damage and support the continued development of Wnt/ß-catenin pathway modulation for the treatment of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , beta Catenina , Adulto , Animais , Humanos , beta Catenina/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Via de Sinalização Wnt , Bleomicina/toxicidade
4.
Cell Chem Biol ; 30(8): 976-986.e5, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37413985

RESUMO

WNTs are essential factors for stem cell biology, embryonic development, and for maintaining homeostasis and tissue repair in adults. Difficulties in purifying WNTs and their lack of receptor selectivity have hampered research and regenerative medicine development. While breakthroughs in WNT mimetic development have overcome some of these difficulties, the tools developed so far are incomplete and mimetics alone are often not sufficient. Here, we developed a complete set of WNT mimetic molecules that cover all WNT/ß-catenin-activating Frizzleds (FZDs). We show that FZD1,2,7 stimulate salivary gland expansion in vivo and salivary gland organoid expansion. We further describe the discovery of a novel WNT-modulating platform that combines WNT and RSPO mimetics' effects into one molecule. This set of molecules supports better organoid expansion in various tissues. These WNT-activating platforms can be broadly applied to organoids, pluripotent stem cells, and in vivo research, and serve as bases for future therapeutic development.


Assuntos
Células-Tronco Pluripotentes , beta Catenina , beta Catenina/metabolismo , Via de Sinalização Wnt
5.
Nat Commun ; 14(1): 2947, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268690

RESUMO

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/ß-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Receptores Frizzled , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Retina/metabolismo , Barreira Hematorretiniana/metabolismo , Via de Sinalização Wnt
6.
Transl Vis Sci Technol ; 11(9): 19, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149648

RESUMO

Purpose: There remains a high unmet need for therapies with new mechanisms of action to achieve reperfusion of ischemic retina in diabetic retinopathy. We examined whether a novel frizzled class receptor 4 (FZD4) agonist could promote regeneration of functional blood vessels in animal models of retinopathy. Methods: We developed a novel Norrin mimetic (SZN-413-p) targeting FZD4 and low-density lipoprotein receptor-related protein 5 (LRP5) and examined its effect on retinal and brain endothelial cells in vitro. SZN-413-p was subsequently humanized, resulting in the therapeutic candidate SZN-413, and was examined in animal models of retinopathy. In an oxygen-induced retinopathy mouse model, avascular and neovascularization areas were measured. Furthermore, in a vascular endothelial growth factor (VEGF)-induced retinal vascular leakage rabbit model, the impact on vascular leakage by SZN-413 was examined by measuring fluorescein leakage. Results: SZN-413-p induced Wnt/ß-catenin signaling and upregulated blood-brain barrier/blood-retina barrier gene expressions in endothelial cells. In the oxygen-induced retinopathy mouse model, SZN-413-p and SZN-413 significantly reduced the neovascularization area size (P < 0.001) to a level comparable to, or better than the positive control aflibercept. Both agonists also showed a reduction in avascular area size compared to vehicle (P < 0.001) and aflibercept groups (P < 0.05 and P < 0.01 for SZN-413-p and SZN-413, respectively). In the VEGF-induced retinal vascular leakage rabbit model, SZN-413 reduced retinal vascular leakage by ∼80%, compared to the vehicle-treated group (P < 0.01). Conclusions: Reduction of neovascular tufts and avascular areas and of VEGF-driven retinal vascular leakage suggests that SZN-413 can simultaneously address retinal non-perfusion and vascular leakage. Translational Relevance: FZD4 signaling modulation by SZN-413 is a novel mechanism of action that can offer a new therapeutic strategy for diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Retinopatia Diabética/tratamento farmacológico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fluoresceínas/uso terapêutico , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Neovascularização Patológica , Oxigênio/uso terapêutico , Coelhos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , beta Catenina/metabolismo , beta Catenina/uso terapêutico
7.
Cell Mol Gastroenterol Hepatol ; 14(2): 435-464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35569814

RESUMO

BACKGROUND AND AIMS: Current management of inflammatory bowel disease leaves a clear unmet need to treat the severe epithelial damage. Modulation of Wnt signaling might present an opportunity to achieve histological remission and mucosal healing when treating IBD. Exogenous R-spondin, which amplifies Wnt signals by maintaining cell surface expression of Frizzled (Fzd) and low-density lipoprotein receptor-related protein receptors, not only helps repair intestine epithelial damage, but also induces hyperplasia of normal epithelium. Wnt signaling may also be modulated with the recently developed Wnt mimetics, recombinant antibody-based molecules mimicking endogenous Wnts. METHODS: We first compared the epithelial healing effects of RSPO2 and a Wnt mimetic with broad Fzd specificity in an acute dextran sulfate sodium mouse colitis model. Guided by Fzd expression patterns in the colon epithelium, we also examined the effects of Wnt mimetics with subfamily Fzd specificities. RESULTS: In the DSS model, Wnt mimetics repaired damaged colon epithelium and reduced disease activity and inflammation and had no apparent effect on uninjured tissue. We further identified that the FZD5/8 and LRP6 receptor-specific Wnt mimetic, SZN-1326-p, was associated with the robust repair effect. Through a range of approaches including single-cell transcriptome analyses, we demonstrated that SZN-1326-p directly impacted epithelial cells, driving transient expansion of stem and progenitor cells, promoting differentiation of epithelial cells, histologically restoring the damaged epithelium, and secondarily to epithelial repair, reducing inflammation. CONCLUSIONS: It is feasible to design Wnt mimetics such as SZN-1326-p that impact damaged intestine epithelium specifically and restore its physiological functions, an approach that holds promise for treating epithelial damage in inflammatory bowel disease.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças , Inflamação , Doenças Inflamatórias Intestinais/patologia , Camundongos , Regeneração , Via de Sinalização Wnt
8.
Nat Commun ; 12(1): 3247, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059688

RESUMO

The Wnt signaling pathway is intricately connected with bone mass regulation in humans and rodent models. We designed an antibody-based platform that generates potent and selective Wnt mimetics. Using this platform, we engineer bi-specific Wnt mimetics that target Frizzled and low-density lipoprotein receptor-related proteins and evaluate their effects on bone accrual in murine models. These synthetic Wnt agonists induce rapid and robust bone building effects, and correct bone mass deficiency and bone defects in various disease models, including osteoporosis, aging, and long bone fracture. Furthermore, when these Wnt agonists are combined with antiresorptive bisphosphonates or anti-sclerostin antibody therapies, additional bone accrual/maintenance effects are observed compared to monotherapy, which could benefit individuals with severe and/or acute bone-building deficiencies. Our data support the continued development of Wnt mimetics for the treatment of diseases of low bone mineral density, including osteoporosis.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/tratamento farmacológico , Fraturas do Fêmur/tratamento farmacológico , Osteoporose Pós-Menopausa/tratamento farmacológico , Proteínas Wnt/agonistas , Idoso , Envelhecimento/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/fisiopatologia , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Feminino , Fraturas do Fêmur/patologia , Fêmur/efeitos dos fármacos , Fêmur/lesões , Fêmur/patologia , Humanos , Camundongos , Osteoporose Pós-Menopausa/fisiopatologia , Via de Sinalização Wnt/efeitos dos fármacos , Adulto Jovem
9.
Sci Rep ; 10(1): 13951, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811902

RESUMO

R-spondin (RSPO) proteins amplify Wnt signaling and stimulate regeneration in a variety of tissues. To repair tissue in a tissue-specific manner, tissue-targeted RSPO mimetic molecules are desired. Here, we mutated RSPO (RSPO2 F105R/F109A) to eliminate LGR binding while preserving ZNRF3/RNF43 binding and targeted the mutated RSPO to a liver specific receptor, ASGR1. The resulting bi-specific molecule (αASGR1-RSPO2-RA) enhanced Wnt signaling effectively in vitro, and its activity was limited to ASGR1 expressing cells. Systemic administration of αASGR1-RSPO2-RA in mice specifically upregulated Wnt target genes and stimulated cell proliferation in liver but not intestine (which is more responsive to non-targeted RSPO2) in healthy mice, and improved liver function in diseased mice. These results not only suggest that a tissue-specific RSPO mimetic protein can stimulate regeneration in a cell-specific manner, but also provide a blueprint of how a tissue-specific molecule might be constructed for applications in a broader context.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Animais , Receptor de Asialoglicoproteína/efeitos dos fármacos , Receptor de Asialoglicoproteína/metabolismo , Linhagem Celular , Proliferação de Células , Descoberta de Drogas/métodos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trombospondinas/metabolismo , Trombospondinas/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
10.
Cell Chem Biol ; 27(5): 598-609.e4, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32220333

RESUMO

WNTs regulate myriad biological processes during embryonic development and are key regulators of stem cell function, tissue homeostasis, and injury repair in adults. The creation of WNT-based therapies has been hampered by challenges in developing soluble, potent, and selective WNT molecules. Soluble WNT surrogates have been reported, but they demonstrate relatively weak WNT signaling activity. Here, we describe a platform for potent, selective WNT surrogate generation. We identify multivalent binding to Frizzleds (FZDs) and low-density lipoprotein receptor-related proteins (LRPs) to be a requirement for maximal WNT/ß-catenin activation. Furthermore, we show that recruitment of two different FZDs together with LRP causes efficient signaling. Surrogate WNT targeting either FZD1,2,7 or FZD5,8 induces expansive growth of intestinal organoids. This flexible WNT surrogate platform yields potent agonists with any desired receptor specificity and will be useful for research and therapeutic applications for tissue regeneration.


Assuntos
Receptores Frizzled/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Descoberta de Drogas , Intestinos/efeitos dos fármacos , Intestinos/crescimento & desenvolvimento , Proteínas Relacionadas a Receptor de LDL/metabolismo , Ligantes , Camundongos , Organoides/efeitos dos fármacos , Organoides/crescimento & desenvolvimento , beta Catenina/metabolismo
11.
PLoS One ; 10(6): e0126924, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083576

RESUMO

Trefoil factor 3 (TFF3), also called intestinal trefoil factor or Itf, is a 59 amino acid peptide found as a homodimer predominantly along the gastrointestinal tract and in serum. TFF3 expression is elevated during gastrointestinal adenoma progression and has been shown to promote mucosal wound healing. Here we show that in contrast to other trefoil factor family members, TFF1 and TFF2, TFF3 is highly expressed in mouse duodenum, jejunum and ileum and that its expression is regulated by food intake. Overexpression of TFF3 using a recombinant adeno-associated virus (AAV) vector, or daily administration of recombinant TFF3 protein in vivo improved glucose tolerance in a diet-induced obesity mouse model. Body weight, fasting insulin, triglyceride, cholesterol and leptin levels were not affected by TFF3 treatment. Induction of mucinous metaplasia was observed in mice with AAV-mediated TFF3 overexpression, however, no such adverse histological effect was seen after the administration of recombinant TFF3 protein. Altogether these results suggest that the therapeutic potential of targeting TFF3 to treat T2D may be limited.


Assuntos
Glicemia/metabolismo , Ingestão de Alimentos/genética , Vetores Genéticos/efeitos adversos , Metaplasia/genética , Mucinas/genética , Obesidade/genética , Animais , Colesterol/sangue , Dependovirus/genética , Dieta Hiperlipídica , Duodeno/metabolismo , Duodeno/patologia , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Teste de Tolerância a Glucose , Humanos , Íleo/metabolismo , Íleo/patologia , Insulina/sangue , Jejuno/metabolismo , Jejuno/patologia , Leptina/sangue , Masculino , Metaplasia/etiologia , Metaplasia/metabolismo , Metaplasia/patologia , Camundongos , Mucinas/administração & dosagem , Mucinas/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fator Trefoil-2 , Fator Trefoil-3 , Triglicerídeos/sangue
12.
Am J Physiol Endocrinol Metab ; 307(12): E1144-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25370851

RESUMO

Elucidating the role of secreted frizzled-related protein 5 (SFRP5) in metabolism and obesity has been complicated by contradictory findings when knockout mice were used to determine metabolic phenotypes. By overexpressing SFRP5 in obese, prediabetic mice we consistently observed elevated hyperglycemia and glucose intolerance, supporting SFRP5 as a negative regulator of glucose metabolism. Accordingly, Sfrp5 mRNA expression analysis of both epididymal and subcutaneous adipose depots of mice indicated a correlation with obesity. Thus, we generated a monoclonal antibody (mAb) against SFRP5 to ascertain the effect of SFRP5 inhibition in vivo. Congruent with SFRP5 overexpression worsening blood glucose levels and glucose intolerance, anti-SFRP5 mAb therapy improved these phenotypes in vivo. The results from both the overexpression and mAb inhibition studies suggest a role for SFRP5 in glucose metabolism and pancreatic ß-cell function and thus establish the use of an anti-SFRP5 mAb as a potential approach to treat type 2 diabetes.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos Monoclonais/imunologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Imunoglobulina G/imunologia , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo
13.
J Lipid Res ; 55(11): 2370-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25258384

RESUMO

LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15-30% lower circulating LDL-C and a disproportionately lower risk (47-88%) of experiencing a cardiovascular event. Here, we utilized pcsk9(-/-) mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9(-/-) mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (-45%) and TGs (-36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (-91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Colesterol/sangue , Fígado/metabolismo , Pró-Proteína Convertases/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Animais , Anticorpos/imunologia , Aterosclerose/sangue , Aterosclerose/enzimologia , Aterosclerose/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Fígado/efeitos dos fármacos , Camundongos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/deficiência , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/imunologia , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia
14.
Biochem Biophys Res Commun ; 418(1): 1-5, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22155242

RESUMO

GPR21 is an orphan G-protein-coupled receptor. We found that mice deficient for the GPR21 gene were resistant to diet-induced obesity. Knockout mice were leaner than their wildtype counterpart, despite that no difference was observed in food intake. No differences were observed in the respiratory exchange rate and thermogenesis. However, knockout mice were more active than wildtype littermates, and this level of activity may be an underlying reason for the difference in energy balance. Mutant mice were more sensitive to insulin than their wildtype control and showed an improved glucose tolerance. Several inflammatory markers MCP-1, CRP and IP-10 were decreased in mutant animals, suggesting that GPR21 may also mediate its effect through anti-inflammatory mechanisms. We found that GPR21 is widely expressed in all tissues, with the highest levels found in the brain and in the spleen. Overall, these findings suggest that GPR21 may play an important role in regulating body weight and glucose metabolism.


Assuntos
Resistência à Insulina/genética , Insulina/farmacologia , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Animais , Biomarcadores/metabolismo , Peso Corporal/genética , Proteína C-Reativa/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/metabolismo , Dieta/efeitos adversos , Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Camundongos , Camundongos Knockout , Obesidade/etiologia , Distribuição Tecidual
15.
Am J Trop Med Hyg ; 83(1): 69-74, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20595480

RESUMO

Severe malaria represents a clinical spectrum of disease. We propose that innate immune inflammatory responses to malaria play key roles in the pathogenesis and clinical outcomes of distinct severe malaria syndromes. To investigate this hypothesis, mice deficient in IRAK4, central to Toll-like receptor (TLR)-mediated signaling, were studied in two experimental models of malaria: Plasmodium berghei (PbA) and Plasmodium chabaudi (PccAS). Irak4(-/-)mice had decreased pro-inflammatory cytokine production during infection in both models. However, animals were relatively protected from PbA-associated symptoms compared with wild-type mice, whereas Irak4(-/-) animals were more susceptible to PccAS-associated disease. These results show that IRAK4-mediated innate immune inflammatory responses play critical roles in divergent clinical outcomes in murine malaria models. As such, integrated approaches, using more than one model, are required to fully understand the parasite/host interactions that characterize severe malaria, and more importantly, to fully assess the effect of adjunctive therapies targeting innate immune responses to malaria.


Assuntos
Imunidade Inata/imunologia , Quinases Associadas a Receptores de Interleucina-1/imunologia , Malária Falciparum/imunologia , Malária/imunologia , Receptores Toll-Like/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Camundongos
16.
Circulation ; 120(14): 1401-14, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19770394

RESUMO

BACKGROUND: The innate immune system greatly contributes to the inflammatory process after myocardial infarction (MI). Interleukin-1 receptor-associated kinase-4 (IRAK-4), downstream of Toll/interleukin-1 receptor signaling, has an essential role in regulating the innate immune response. The present study was designed to determine the mechanism by which IRAK-4 is responsible for the cardiac inflammatory process, which consequently affects left ventricular remodeling after MI. METHODS AND RESULTS: Experimental MI was created in IRAK-4(-/-) and wild-type mice by left coronary ligation. Mice with a targeted deletion of IRAK-4 had an improved survival rate at 4 weeks after MI. IRAK-4(-/-) mice also demonstrated attenuated cardiac dilation and decreased inflammation in the infarcted myocardium, which was associated with less proinflammatory and Th1 cytokine expression mediated by suppression of nuclear factor-kappaB and c-Jun N-terminal kinase activation. IRAK-4(-/-) mice had fewer infiltrations of CD45+ leukocytes and CD11c+ dendritic cells, inhibition of apoptosis, and reduced fibrosis and nitric oxide production. Cardiac dendritic cells in IRAK-4(-/-) mice were relatively immature or functionally naïve after MI in that they demonstrated less cytokine and costimulatory molecule gene expression. Furthermore, IRAK-4(-/-) dendritic cells have less mobilization capacity. Transfer of wild type-derived bone marrow dendritic cells into IRAK-4(-/-) mice for functional dendritic cell reconstitution negated the survival advantage and reduced the cardiac dilation observed with IRAK-4(-/-) mice at 28 days after MI. CONCLUSIONS: Deletion of IRAK-4 has favorable effects on survival and left ventricular remodeling after MI through modification of the host inflammatory process by blunting the detrimental bone marrow dendritic cells mobilization after myocardial ischemia.


Assuntos
Células da Medula Óssea/fisiologia , Células Dendríticas/fisiologia , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Infarto do Miocárdio/fisiopatologia , Remodelação Ventricular/fisiologia , Transferência Adotiva , Animais , Células da Medula Óssea/imunologia , Cruzamentos Genéticos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Deleção de Genes , Quinases Associadas a Receptores de Interleucina-1/deficiência , Quinases Associadas a Receptores de Interleucina-1/genética , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/mortalidade , Neutrófilos/imunologia , Reação em Cadeia da Polimerase , Taxa de Sobrevida , Linfócitos T/imunologia
17.
Curr Top Med Chem ; 9(8): 724-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19689377

RESUMO

Interleukin-1 receptor-associated kinases (IRAKs) are key components in the signal transduction pathways utilized by interleukin-1 receptor (IL-1R), interleukin-18 receptor (IL-18R), and Toll-like receptors (TLRs). Out of four members in the mammalian IRAK family, IRAK-4 is considered to be the "master IRAK", the only family member indispensable for IL-1R/TLR signaling. In humans, mutations resulting in IRAK-4 deficiency have been linked to susceptibility to bacterial infections, especially recurrent pyogenic bacterial infections. Furthermore, knock-in experiments by several groups have clearly demonstrated that IRAK-4 requires its kinase activity for its function. Given the critical role of IRAK-4 in inflammatory processes, modulation of IRAK-4 kinase activity presents an attractive therapeutic approach for the treatment of immune and inflammatory diseases. The recent success in the determination of the 3-dimensional structure of the IRAK-4 kinase domain in complex with inhibitors has facilitated the understanding of the mechanistic role of IRAK-4 in immunity and inflammation as well as the development of specific IRAK-4 kinase inhibitors. In this article, we review the biological function of IRAK-4, the structural characteristics of the kinase domain, and the development of small molecule inhibitors targeting the kinase activity. We also review the key pharmacophores required for several classes of inhibitors as well as important features for optimal protein/inhibitor interactions. Lastly, we summarize how these insights can be translated into strategies to develop potent IRAK-4 inhibitors with desired properties as new anti-inflammatory therapeutic agents.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Desenho de Fármacos , Humanos , Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/uso terapêutico
18.
Apoptosis ; 14(9): 1039-49, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19575295

RESUMO

The p53-induced protein with a death domain, PIDD, was identified as a p53 target gene whose main role is to execute apoptosis in a p53-dependent manner. To investigate the physiological role of PIDD in apoptosis, we generated PIDD-deficient mice. Here, we report that, although PIDD expression is inducible upon DNA damage, PIDD-deficient mice undergo apoptosis normally not only in response to DNA damage, but also in response to various p53-independent stress signals and to death receptor (DR) engagement. This indicates that PIDD is not required for DNA damage-, stress-, and DR-induced apoptosis. Also, in the absence of PIDD, both caspase-2 processing and activation occur in response to DNA damage. Our findings demonstrate that PIDD does not play an essential role for all p53-mediated or p53-independent apoptotic pathways.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Dano ao DNA , Estresse Fisiológico , Animais , Caspase 2/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Marcação de Genes , Marcação In Situ das Extremidades Cortadas , Camundongos , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Irradiação Corporal Total
19.
Proc Natl Acad Sci U S A ; 106(24): 9820-5, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19443683

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) by interacting with the LDL receptor (LDLR) and is an attractive therapeutic target for LDL-C lowering. We have generated a neutralizing anti-PCSK9 antibody, mAb1, that binds to an epitope on PCSK9 adjacent to the region required for LDLR interaction. In vitro, mAb1 inhibits PCSK9 binding to the LDLR and attenuates PCSK9-mediated reduction in LDLR protein levels, thereby increasing LDL uptake. A combination of mAb1 with a statin increases LDLR levels in HepG2 cells more than either treatment alone. In wild-type mice, mAb1 increases hepatic LDLR protein levels approximately 2-fold and lowers total serum cholesterol by up to 36%: this effect is not observed in LDLR(-/-) mice. In cynomolgus monkeys, a single injection of mAb1 reduces serum LDL-C by 80%, and a significant decrease is maintained for 10 days. We conclude that anti-PCSK9 antibodies may be effective therapeutics for treating hypercholesterolemia.


Assuntos
Anticorpos Monoclonais/imunologia , Colesterol/sangue , Testes de Neutralização , Serina Endopeptidases/imunologia , Animais , Colesterol/imunologia , Cristalografia por Raios X , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Receptores de LDL/genética , Receptores de LDL/fisiologia
20.
J Immunol ; 182(11): 7212-21, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19454718

RESUMO

TLR stimulation triggers a signaling pathway via MyD88 and IL-1R-associated kinase 4 that is essential for proinflammatory cytokine induction. Although NF-kappaB has been shown to be one of the key transcriptional regulators of these cytokines, evidence suggests that other factors may also be important. In this study, we showed that MyD88-deficient macrophages have defective c-Rel activation, which has been linked to IL-12p40 induction, but not IL-6 or TNF-alpha. We also investigated other transcription factors and showed that C/EBPbeta and C/EBPdelta expression was limited in MyD88- or IL-1R-associated kinase 4-deficient macrophages treated with LPS. Importantly, the absence of both C/EBPbeta and C/EBPdelta resulted in the impaired induction of proinflammatory cytokines stimulated by several TLR ligands. Our results identify c-Rel and C/EBPbeta/delta as important transcription factors in a MyD88-dependent pathway that regulate the induction of proinflammatory cytokines.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Proteína delta de Ligação ao Facilitador CCAAT/fisiologia , Citocinas/biossíntese , Proteínas Proto-Oncogênicas c-rel/fisiologia , Receptores Toll-Like/imunologia , Animais , Células Cultivadas , Mediadores da Inflamação , Quinases Associadas a Receptores de Interleucina-1 , Macrófagos , Camundongos , Fator 88 de Diferenciação Mieloide/deficiência , Ativação Transcricional/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...