Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35327519

RESUMO

A vast majority of BRAF V600E mutated melanoma patients will develop resistance to combined BRAF/MEK inhibition after initial clinical response. Resistance to targeted therapy is described to be accompanied by specific metabolic changes in melanoma. The aim of this work was to evaluate metabolic imaging using 13C-MRS (Magnetic Resonance Spectroscopy) as a marker of response to BRAF/MEK inhibition in a syngeneic melanoma model. Tumor growth was significantly delayed in mice bearing YUMM1.7 melanoma xenografts treated with the BRAF inhibitor vemurafenib, and/or with the MEK inhibitor trametinib, in comparison with the control group. 13C-MRS was performed in vivo after injection of hyperpolarized (HP) 13C-pyruvate, at baseline and 24 h after treatment, to evaluate dynamic changes in pyruvate-lactate exchange. Furthermore, ex vivo 13C-MRS steady state metabolic tracing experiments were performed after U-13C-glucose or 5-13C-glutamine injection, 24 h after treatment. The HP 13C-lactate-to-pyruvate ratio was not modified in response to BRAF/MEK inhibition, whereas the production of 13C-lactate from 13C-glucose was significantly reduced 24 h after treatment with vemurafenib, trametinib, or with the combined inhibitors. Conversely, 13C-glutamine metabolism was not modified in response to BRAF/MEK inhibition. In conclusion, we identified 13C-glucose fluxomic as a potential marker of response to BRAF/MEK inhibition in YUMM1.7 melanoma xenografts.

2.
Cancers (Basel) ; 14(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35158830

RESUMO

Obesity is characterized by an excessive fat mass accumulation associated with multiple disorders, including impaired glucose homeostasis, altered adipokine levels, and hyperlipidemia. Despite clear associations between tumor progression and obesity, the effects of these disorders on tumor metabolism remain largely unknown. Thus, we studied the metabolic differences between tumors of obese and lean mice in murine models of triple-negative breast cancer (E0771 and PY8819). For this purpose, a real-time hyperpolarized 1-13C-pyruvate-to-lactate conversion was studied before and after glucose administration in fasting mice. This work was completed by U-13C glucose tracing experiments using nuclear magnetic resonance (NMR) spectroscopy, as well as mass spectrometry (MS). Ex vivo analyses included immunostainings of major lipid, glucose, and monocarboxylic acids transporters. On the one hand, we discovered that tumors of obese mice yield higher lactate/pyruvate ratios after glucose administration. On the other hand, we found that the same tumors produce higher levels of lactate and alanine from glucose than tumors from lean mice, while no differences on the expression of key transporters associated with glycolysis (i.e., GLUT1, MCT1, MCT4) have been observed. In conclusion, our data suggests that breast tumor metabolism is regulated by the host's physiological status, such as obesity and diabetes.

3.
J Cell Mol Med ; 24(24): 14195-14204, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33107196

RESUMO

Acetate is reported as a regulator of fat mass but also as lipogenic source for cancer cells. Breast cancer is surrounded by adipose tissue and has been associated with obesity. However, whether acetate contributes to cancer cell metabolism as lipogenic substrate and/or by changing fat storage and eventually obesity-induced breast cancer progression remains unknown. Therefore, we studied the contribution of acetate to breast cancer metabolism and progression. In vitro, we found that acetate is not a bioenergetic substrate under normoxia and did not result in a significant change of growth. However, by using lipidomic approaches, we discovered that acetate changes the lipid profiles of the cells under hypoxia. Moreover, while mice fed a high-fat diet (HFD) developed bigger tumours than their lean counterparts, exogenous acetate supplementation leads to a complete abolishment of fat mass gain without reverting the HFD-induced obesity-driven tumour progression. In conclusion, although acetate protects against diet-induced obesity, our data suggest that it is not affecting HFD-driven tumour progression.


Assuntos
Acetatos/metabolismo , Acetatos/farmacologia , Neoplasias da Mama/metabolismo , Obesidade/metabolismo , Adipogenia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica/métodos , Camundongos , Oxigênio/metabolismo , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...