Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(12): 168604, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729260

RESUMO

Posttranscriptional maturation and export from the nucleus to the cytoplasm are essential steps in the normal processing of many cellular RNAs. The RNA helicase UAP56 (U2AF associated protein 56; also known as DDX39B) has emerged as a critical player in facilitating and co-transcriptionally linking these steps. Originally identified as a helicase involved in pre-mRNA splicing, UAP56 has been shown to facilitate formation of the A complex during spliceosome assembly. Additionally, it has been found to be critical for interactions between components of the exon junction and transcription and export complexes to promote the loading of export receptors. Although it appears to be structurally similar to other helicase superfamily 2 members, UAP56's ability to interact with multiple different protein partners allows it to perform its various cellular functions. Herein, we describe the structure-activity relationship studies that identified protein interactions of UAP56 and its human paralog URH49 (UAP56-related helicase 49; also known as DDX39A) and are beginning to reveal molecular mechanisms by which interacting proteins and substrate RNAs may regulate these helicases. We also provide an overview of reports that have demonstrated less well-characterized roles for UAP56, including R-loop resolution and telomere maintenance. Finally, we discuss studies that indicate a potential pathogenic effect of UAP56 in the development of autoimmune diseases and cancer, and identify the association of somatic and genetic mutations in UAP56 with neurodevelopmental disorders.


Assuntos
RNA Helicases DEAD-box , Splicing de RNA , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/química , Relação Estrutura-Atividade , Spliceossomos/metabolismo , Ligação Proteica , Animais
2.
RNA ; 30(3): 271-280, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164604

RESUMO

The human U1 snRNA is encoded by a multigene family consisting of transcribed variants and defective pseudogenes. Many variant U1 (vU1) snRNAs have been demonstrated to not only be transcribed but also processed by the addition of a trimethylated guanosine cap, packaged into snRNPs, and assembled into spliceosomes; however, their capacity to facilitate pre-mRNA splicing has, so far, not been tested. A recent systematic analysis of the human snRNA genes identified 178 U1 snRNA genes that are present in the genome as either tandem arrays or single genes on multiple chromosomes. Of these, 15 were found to be expressed in human tissues and cell lines, although at significantly low levels from their endogenous loci, <0.001% of the canonical U1 snRNA. In this study, we found that placing the variants in the context of the regulatory elements of the RNU1-1 gene improves the expression of many variants to levels comparable to the canonical U1 snRNA. Application of a previously established HeLa cell-based minigene reporter assay to examine the capacity of the vU1 snRNAs to support pre-mRNA splicing revealed that even though the exogenously expressed variant snRNAs were enriched in the nucleus, only a few had a measurable effect on splicing.


Assuntos
Precursores de RNA , Splicing de RNA , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Células HeLa , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA