Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 27(4): 158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476893

RESUMO

Toll-like receptor 2 (TLR2) is an important sensor for innate immune cells, including neutrophils, for the recognition of pathogen infection. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is a TLR2 ligand. LTA-induced TLR2 signaling pathways are well established in neutrophils. However, experimental studies regarding transcriptional regulation and the molecular mechanisms in primary human neutrophils are limited due to their short lifespan. The promyelocytic leukemia cell line, HL-60, can differentiate into a neutrophil-like phenotype following treatment with dimethyl sulfoxide. The aim of the present study was to investigate whether differentiated HL-60 (dHL-60) cells induced a similar gene expression profile upon LTA treatment as that previously determined for primary human neutrophils. After 4 or 24 h of Staphylococcus aureus LTA treatment, undifferentiated HL-60 (uHL-60) and dHL-60 cells were collected for RNA sequencing. The results demonstrated that hundreds of identical differentially expressed genes (DEGs) were observed in 1 and 10 µg/ml LTA-treated dHL-60 cells following 4 and 24 h of incubation, while almost no DEGs between LTA-treated HL-60 and dHL-60 cells were observed. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses (KEGG), it was noted that the pathways of shared DEGs between the 1 and 10 µg/ml LTA-treated dHL-60 cells at both time points were significantly enriched in immune and inflammatory response-related pathways, such as cellular response to tumor necrosis factor, interleukin-1, interferon γ, neutrophil chemotaxis, the NF-κB signaling pathway and the Toll-like receptor signaling pathway. In addition, when comparing the effect of 1 and 10 µg/ml LTA treatment on dHL60 cells, it was found that all enriched GO and KEGG pathways were associated with the TLR signaling pathways of neutrophils. The results of the present study provided important information for the implementation of mRNA profiling in LTA-treated dHL-60 cells and may indicate the feasibility of using dHL-60 cells as a research model for TLR2 signaling in human neutrophils.

2.
Cancers (Basel) ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894479

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive cancers with a low overall survival rate. The treatment of GBM is challenging due to the presence of the blood-brain barrier (BBB), which hinders drug delivery. Invasive procedures alone are not effective at completely removing such tumors. Hence, identifying the crucial pathways and biomarkers for the treatment of GBM is of prime importance. We conducted this study to identify the pathways associated with GBM. We used The Cancer Genome Atlas (TCGA) GBM genomic dataset to identify differentially expressed genes (DEGs). We investigated the prognostic values of the guanine nucleotide-binding protein G(i) alpha subunit (GNAI) family of genes in GBM using a Chinese Glioma Genome Atlas (CGGA) dataset. Within this dataset, we observed the association in the tumor microenvironment between the gene expression of GNAI subunit 3 (GNAI3) and a poor prognosis. MetaCore and gene ontology (GO) analyses were conducted to explore the role of GNAI3 in co-expressed genes and associated signaling pathways using a transcript analysis. Notable pathways included "Cytoskeleton remodeling regulation of actin cytoskeleton organization by the kinase effectors of Rho GTPases" and "Immune response B cell antigen receptor (BCR) pathway". A single-cell analysis was used to assess GNAI3 expression in GBM. The results demonstrated that GNAI family genes, specifically GNAI3, were significantly associated with carcinogenesis and malignancy in GBM patients. Our findings suggest that the GNAI3 gene holds potential as a prognostic biomarker for GBM.

3.
J Dermatol Sci ; 109(1): 37-46, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36725459

RESUMO

BACKGROUND: Impaired wound healing is a serious diabetes complication compromising patients' quality of life. However, the pathogenesis of diabetic wounds (DWs) remains incompletely understood. Human epidermal keratinocyte (HEK) is the sentinel cell that initiates healing processes after the epidermal integrity has been disrupted. OBJECTIVE: This study aimed to investigate the functional roles of HEKs in wound healing and to identify candidate genes, signaling pathways and molecular signatures contributing to the DWs. METHODS: HEKs were cultured in normal or high-glucose environment, followed by scratch, to mimic the microenvironment of normal wounds and DWs. Subsequently, we performed RNA sequencing and systematically analyzed the expression profiles by bioinformatics approaches. RESULTS: High-glucose environment altered the keratinocyte transcriptome responses to wounding. In experimental model of DWs, we found that TNF, CYP24A1, NR4A3 and GGT1 were key overexpressed genes in keratinocytes and were implicated in multiple cellular responses. Further analysis showed that wounding in high-glucose environment activated G-protein-coupled receptor (GPCR) signaling, cAMP response element-binding protein (CREB) signaling, and adrenomedullin signaling in keratinocytes, while dysregulated skin development and immune responses as compared to their counterpart in normal glucose settings. CONCLUSION: This simplified in-vitro model serves as a valuable tool to gain insights into the molecular basis of DWs and to facilitate establishment of personalized therapies in clinical practice.


Assuntos
Diabetes Mellitus , Medicina de Precisão , Humanos , Qualidade de Vida , Transcriptoma , Glucose/metabolismo , Queratinócitos/metabolismo , Diabetes Mellitus/metabolismo , Células Cultivadas
4.
Int J Med Sci ; 20(1): 87-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36619227

RESUMO

The complexity of lung adenocarcinoma (LUAD) including many interacting biological processes makes it difficult to find therapeutic biomarkers for treatment. Previous studies demonstrated that PSMG (proteasome assembly chaperone) family members regulate the degradation of abnormal proteins. However, transcript expressions of this gene family in LUAD still need to be more fully investigated. Therefore, we used a holistic bioinformatics approach to explore PSMG genes involved in LUAD patients by integrating several high-throughput databases and tools including The Cancer Genome Atlas (TCGA), and Kaplan-Meier plotter database. These data demonstrated that PSMG3 and PSMG4 were expressed at significantly higher levels in neoplastic cells than in normal lung tissues. Notably, increased expressions of these proteins were correlated with poor prognoses of lung cancer patients, which probably confirmed their fundamental roles in the staging of LUAD tumors. Meanwhile, it was also indicated that there were positive correlations between PSMG family genes and the immune response, metabolism of ubiquinone, cell cycle regulatory pathways, and heat shock protein 90 (HSP90)/phosphatidylinositol 3-kinase (PI3K)/Wnt signaling. Experimental data also confirmed that the knockdown of PSMG4 in LUAD cell lines decreased cell proliferation and influenced expressions of downstream molecules. Collectively, this study revealed that PSMG family members are novel prognostic biomarkers for LUAD progression, which also provide new therapeutic targets of LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Complexo de Endopeptidases do Proteassoma/genética , Fosfatidilinositol 3-Quinases , Adenocarcinoma de Pulmão/genética , Chaperonas Moleculares , Neoplasias Pulmonares/genética , Regulação Neoplásica da Expressão Gênica
5.
Am J Transl Res ; 15(12): 6701-6717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186977

RESUMO

OBJECTIVE: Ribonuclease P RNA component H1 (RPPH1) is a long non-coding RNA (lncRNA) associated with cancer progression. Higher RPPH1 expression in breast and cervical cancer samples than that in normal tissues were observed through the lncRNASNP2 database; therefore, silencing RPPH1 expression might be a potential strategy for cancer treatments, even though RPPH1 is also an RNA subunit of ribonuclease P involved in processing transfer RNA (tRNA) precursors and the effect of RPPH1 knockdown is not yet fully understood. METHODS: Differentially expressed genes (DEGs) were identified through RNA sequencing in each shRNA-transfected RPPH1 knockdown MDA-MB-231, RPPH1 knockdown HeLa cell, and respective control cells, then the gene ontology enrichment analysis was performed by IPA and MetaCore database according to these DEGs, with further in vitro experiments validating the effect of RPPH1 silencing in MDA-MB-231 and HeLa cells. RESULTS: Hundreds of down-regulated DEGs were identified in RPPH1 knockdown MDA-MB-231 and HeLa cells while bioinformatics analysis revealed that these genes were involved in pathways related to immune response and cancerogenesis. Compared to mock- and vector-transfected cells, the production of mature tRNAs, cell proliferation and migration capacity were inhibited in RPPH1-silenced HeLa and MDA-MB-231 cells. Additionally, RPPH1 knockdown promoted G1 cell cycle arrest mainly through the down-regulation of cyclin D1, although glycolytic pathways were only affected in RPPH1 knockdown HeLa cells but not MDA-MB-231 cells. CONCLUSION: This study demonstrated that knockdown RPPH1 affected tRNA production, cell proliferation and metabolism. Our findings might provide insight into the role of RPPH1 in tumor development.

6.
Aging (Albany NY) ; 14(20): 8498-8567, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36315446

RESUMO

Breast cancer is one of the leading deaths in all kinds of malignancies; therefore, it is important for early detection. At the primary tumor site, tumor cells could take on mesenchymal properties, termed the epithelial-to-mesenchymal transition (EMT). This process is partly regulated by members of the cadherin (CDH) family of genes, and it is an essential step in the formation of metastases. There has been a lot of study of the roles of some of the CDH family genes in cancer; however, a holistic approach examining the roles of distinct CDH family genes in the development of breast cancer remains largely unexplored. In the present study, we used a bioinformatics approach to examine expression profiles of CDH family genes using the Oncomine, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), cBioPortal, MetaCore, and Tumor IMmune Estimation Resource (TIMER) platforms. We revealed that CDH1/2/4/11/12/13 messenger (m)RNA levels are overexpressed in breast cancer cells compared to normal cells and were correlated with poor prognoses in breast cancer patients' distant metastasis-free survival. An enrichment analysis showed that high expressions of CDH1/2/4/11/12/13 were significantly correlated with cell adhesion, the extracellular matrix remodeling process, the EMT, WNT/beta-catenin, and interleukin-mediated immune responses. Collectively, CDH1/2/4/11/12/13 are thought to be potential biomarkers for breast cancer progression and metastasis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal/genética
7.
J Immunol Res ; 2022: 3883822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093436

RESUMO

Monkeypox virus (MPV) is a smallpox-like virus belonging to the genus Orthopoxvirus of the family Poxviridae. Unlike smallpox with no animal reservoir identified and patients suffering from milder symptoms with less mortality, several animals were confirmed to serve as natural hosts of MPV. The reemergence of a recently reported monkeypox epidemic outbreak in nonendemic countries has raised concerns about a global outburst. Since the underlying mechanism of animal-to-human transmission remains largely unknown, comprehensive analyses to discover principal differences in gene signatures during disease progression have become ever more critical. In this study, two MPV-infected in vitro models, including human immortal epithelial cancer (HeLa) cells and rhesus monkey (Macaca mulatta) kidney epithelial (MK2) cells, were chosen as the two subjects to identify alterations in gene expression profiles, together with co-regulated genes and pathways that are affected during monkeypox disease progression. Using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and MetaCore analyses, we discovered that elevated expression of genes associated with interleukins (ILs), G protein-coupled receptors (GPCRs), heat shock proteins (HSPs), Toll-like receptors (TLRs), and metabolic-related pathways play major roles in disease progression of both monkeypox-infected monkey MK2 and human HeLa cell lines. Interestingly, our analytical results also revealed that a cluster of differentiation 40 (CD40), plasmin, and histamine served as major regulators in the monkeypox-infected monkey MK2 cell line model, while interferons (IFNs), macrophages, and neutrophil-related signaling pathways dominated the monkeypox-infected human HeLa cell line model. Among immune pathways of interest, apart from traditional monkeypox-regulated signaling pathways such as nuclear factor- (NF-κB), mitogen-activated protein kinases (MAPKs), and tumor necrosis factors (TNFs), we also identified highly significantly expressed genes in both monkey and human models that played pivotal roles during the progression of monkeypox infection, including CXCL1, TNFAIP3, BIRC3, IL6, CCL2, ZC3H12A, IL11, CSF2, LIF, PTX3, IER3, EGR1, ADORA2A, and DUOX1, together with several epigenetic regulators, such as histone cluster family gene members, HIST1H3D, HIST1H2BJ, etc. These findings might contribute to specific underlying mechanisms related to the pathophysiology and provide suggestions regarding modes of transmission, post-infectious sequelae, and vaccine development for monkeypox in the future.


Assuntos
Mpox , Varíola , Animais , Progressão da Doença , Células HeLa , Humanos , Macaca mulatta , Mpox/patologia , Monkeypox virus/genética , Transcriptoma
8.
J Microbiol Immunol Infect ; 54(5): 845-857, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34176764

RESUMO

BACKGROUND: Pathogenic coronaviruses include Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. These viruses have induced outbreaks worldwide, and there are currently no effective medications against them. Therefore, there is an urgent need to develop potential drugs against coronaviruses. METHODS: High-throughput technology is widely used to explore differences in messenger (m)RNA and micro (mi)RNA expression profiles, especially to investigate protein-protein interactions and search for new therapeutic compounds. We integrated miRNA and mRNA expression profiles in MERS-CoV-infected cells and compared them to mock-infected controls from public databases. RESULTS: Through the bioinformatics analysis, there were 251 upregulated genes and eight highly differentiated miRNAs that overlapped in the two datasets. External validation verified that these genes had high expression in MERS-CoV-infected cells, including RC3H1, NF-κB, CD69, TNFAIP3, LEAP-2, DUSP10, CREB5, CXCL2, etc. We revealed that immune, olfactory or sensory system-related, and signal-transduction networks were discovered from upregulated mRNAs in MERS-CoV-infected cells. In total, 115 genes were predicted to be related to miRNAs, with the intersection of upregulated mRNAs and miRNA-targeting prediction genes such as TCF4, NR3C1, and POU2F2. Through the Connectivity Map (CMap) platform, we suggested potential compounds to use against MERS-CoV infection, including diethylcarbamazine, harpagoside, bumetanide, enalapril, and valproic acid. CONCLUSIONS: The present study illustrates the crucial roles of miRNA-mRNA interacting networks in MERS-CoV-infected cells. The genes we identified are potential targets for treating MERS-CoV infection; however, these could possibly be extended to other coronavirus infections.


Assuntos
Adenocarcinoma de Pulmão/virologia , Infecções por Coronavirus , Células Epiteliais/virologia , Neoplasias Pulmonares/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , COVID-19 , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/genética , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/metabolismo , Surtos de Doenças , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
9.
Biology (Basel) ; 10(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924823

RESUMO

The prognosis of patients with metastatic lung adenocarcinoma (LUAD) is poor. Although novel lung cancer treatments have been developed for metastatic LUAD, not all patients are fit to receive these treatments. The present study aimed to identify the novel regulatory genes in metastatic LUAD. Because the pleural cavity is a frequent metastasis site of LUAD, the adjacent non-tumor tissue, primary tumor tissue, and metastatic lung tumor tissue in the pleura of a single patient with LUAD were collected. The gene expression profiles of the collected samples were further analyzed via RNA sequencing and bioinformatic analysis. A high expression level of ubiquitin conjugating enzyme E2 H (UBE2H), a hypoxia-mediated gene, was identified in the metastatic malignant pleural tumor. After accessing the survival data in patients with lung adenocarcinoma through online databases, a high UBE2H expression was associated with poor survival for LUAD. UBE2H knockdown in two lung adenocarcinoma cell lines suppressed the cell migration capacity and reversed the epithelial-mesenchymal transition (EMT) signaling pathway. A high expression of UBE2H-targeting microRNAs, including miR-101, miR-30a, miR-30b, miR-328, and miR-497, were associated with a favorable prognosis. Moreover, the UBE2H expression revealed a significant correlation with the copy number variation. Taken together, the presence of UBE2H regulated the EMT program and metastasis in LUAD.

10.
Int J Med Sci ; 18(5): 1143-1152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33526974

RESUMO

Highly pathogenic coronaviruses (CoVs) induce acute respiratory distress syndrome, and the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused a pandemic since late 2019. The diversity of clinical manifestations after SARS-CoV-2 infection results in great challenges to diagnose CoV disease 2019 (COVID-19). There is a growing body of published research on this topic; however, effective medications are still undergoing a long process of being assessed. In the search for potential genetic targets for this infection, we applied a holistic bioinformatics approach to study alterations of gene signatures between SARS-CoV-2-infected cells and mock-infected controls. Two different kinds of lung epithelial cells, A549 with angiotensin-converting enzyme 2 (ACE2) overexpression and normal human bronchial epithelial (NHBE) cells, were infected with SARS-CoV-2. We performed bioinformatics analyses of RNA-sequencing in this study. Through a Venn diagram, Database for Annotation, Visualization and Integrated Discovery, Gene Ontology, Ingenuity Pathway Analysis, and Gene Set Enrichment Analysis, the pathways and networks were constructed from commonly upregulated genes in SARS-CoV-2-infected lung epithelial cells. Genes associated with immune-related pathways, responses of host cells after intracellular infection, steroid hormone biosynthesis, receptor signaling, and the complement system were enriched. Dysregulation of the immune system and malfunction of interferon contribute to a failure to kill SARS-CoV-2 and exacerbate respiratory distress in severely ill patients. Current findings from this study provide a comprehensive investigation of SARS-CoV-2 infection using high-throughput technology.


Assuntos
COVID-19/imunologia , Redes Reguladoras de Genes , Células A549 , COVID-19/genética , Simulação por Computador , Interações Hospedeiro-Patógeno/imunologia , Humanos , SARS-CoV-2/fisiologia
11.
Medicine (Baltimore) ; 100(7): e24321, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33607766

RESUMO

ABSTRACT: Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 induces severe infection, and it is responsible for a worldwide disease outbreak starting in late 2019. Currently, there are no effective medications against coronavirus. In the present study, we utilized a holistic bioinformatics approach to study gene signatures of SARS-CoV- and SARS-CoV-2-infected Calu-3 lung adenocarcinoma cells. Through the Gene Ontology platform, we determined that several cytokine genes were up-regulated after SARS-CoV-2 infection, including TNF, IL6, CSF2, IFNL1, IL-17C, CXCL10, and CXCL11. Differentially regulated pathways were detected by the Kyoto Encyclopedia of Genes and Genomes, gene ontology, and Hallmark platform, including chemokines, cytokines, cytokine receptors, cytokine metabolism, inflammation, immune responses, and cellular responses to the virus. A Venn diagram was utilized to illustrate common overlapping genes from SARS-CoV- and SARS-CoV-2-infected datasets. An Ingenuity pathway analysis discovered an enrichment of tumor necrosis factor- (TNF-) and interleukin (IL)-17-related signaling in a gene set enrichment analysis. Downstream networks were predicted by the Database for Annotation, Visualization, and Integrated Discovery platform also revealed that TNF and TNF receptor 2 signaling elicited leukocyte recruitment, activation, and survival of host cells after coronavirus infection. Our discovery provides essential evidence for transcript regulation and downstream signaling of SARS-CoV and SARS-CoV-2 infection.


Assuntos
COVID-19/genética , COVID-19/imunologia , Quimiocinas/biossíntese , Citocinas/biossíntese , Mediadores da Inflamação/metabolismo , Linhagem Celular Tumoral , Quimiocinas/genética , Citocinas/genética , Perfilação da Expressão Gênica , Ontologia Genética , Interações Hospedeiro-Patógeno , Humanos , Interleucina-17/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , SARS-CoV-2 , Fator de Necrose Tumoral alfa/biossíntese , Regulação para Cima
12.
Aging (Albany NY) ; 13(3): 4157-4181, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33461170

RESUMO

According to cancer statistics reported in 2020, breast cancer constitutes 30% of new cancer cases diagnosed in American women. Histological markers of breast cancer are expressions of the estrogen receptor (ER), the progesterone receptor (PR), and human epidermal growth factor receptor (HER)-2. Up to 80% of breast cancers are grouped as ER-positive, which implies a crucial role for estrogen in breast cancer development. Therefore, identifying potential therapeutic targets and investigating their downstream pathways and networks are extremely important for drug development in these patients. Through high-throughput technology and bioinformatics screening, we revealed that coiled-coil domain-containing protein 167 (CCDC167) was upregulated in different types of tumors; however, the role of CCDC167 in the development of breast cancer still remains unclear. Integrating many kinds of databases including ONCOMINE, MetaCore, IPA, and Kaplan-Meier Plotter, we found that high expression levels of CCDC167 predicted poor prognoses of breast cancer patients. Knockdown of CCDC167 attenuated aggressive breast cancer growth and proliferation. We also demonstrated that treatment with fluorouracil, carboplatin, paclitaxel, and doxorubicin resulted in decreased expression of CCDC167 and suppressed growth of MCF-7 cells. Collectively, these findings suggest that CCDC167 has high potential as a therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama/genética , Ciclo Celular/genética , Proliferação de Células/genética , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Carboplatina/farmacologia , Doxorrubicina/farmacologia , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Paclitaxel/farmacologia , RNA Mensageiro/metabolismo
14.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933162

RESUMO

RNA-based therapeutics are considered as novel treatments for human diseases. Our previous study demonstrated that treatment with short-hairpin RNA against Ido1 (IDO shRNA) suppresses tumor growth, detects Th1-bias immune responses, and elevates expression of tryptophan transfer RNA (tRNATrp) in total splenocytes. In addition, depletion of Ly6g+ neutrophils attenuates the effect of IDO shRNA. The aim of this study was to investigate the regulatory network and the expression profile of tRNAs and other non-coding RNAs in IDO shRNA-treated spleens. The total splenocytes and magnetic bead-enriched splenic neutrophils were collected from the lung tumor bearing mice, which were treated with IDO shRNA or scramble IDO shRNA, and the collected cells were subsequently subjected to RNA sequencing. The gene ontology analysis revealed the different enrichment pathways in total splenocytes and splenic neutrophils. Furthermore, the expression of tRNA genes was identified and validated. Six isoacceptors of tRNA, with different expression patterns between total splenocytes and splenic neutrophils, were observed. In summary, our findings not only revealed novel biological processes in IDO shRNA-treated total splenocytes and splenic neutrophils, but the identified tRNAs and other non-coding RNAs may contribute to developing a novel biomarker gene set for evaluating the clinical efficiency of RNA-based cancer immunotherapies.


Assuntos
Antineoplásicos/administração & dosagem , Regulação da Expressão Gênica/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Neutrófilos/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA de Transferência/genética , Baço/fisiologia , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Indolamina-Pirrol 2,3,-Dioxigenase/administração & dosagem , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem , Baço/efeitos dos fármacos
15.
Int J Med Sci ; 17(11): 1639-1651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32669966

RESUMO

The cluster of differentiation 34 (CD34) family, which includes CD34, podocalyxin-like protein 1 (PODXL), and PODXL2, are type-I transmembrane sialomucins and markers of hematopoietic stem cells (HSCs) and vascular-associated tissues. CD34 family proteins are expressed by endothelial cells and hematopoietic precursors. PODXL is well known to be associated with invadopodia formation and to promote the epithelial-mesenchymal transition, tumor migration and invasion. PODXL expression was correlated with poor survival of cancer patients. However, the role of PODXL2 in cancer has been less fully explored. To reveal the novel role of PODXL2 in breast cancer, the present study evaluated PODXL2 levels in relation to clinical outcomes of cancer patients by performing a bioinformatics analysis using the Oncomine database, Kaplan-Meier plots, and the CCLE database. Empirical validation of bioinformatics predictions was conducted utilizing the short hairpin (sh)-RNA silencing method for PODXL2 in the BT474 invasive ductal breast carcinoma cell line. The bioinformatics analysis revealed that PODXL2 overexpression was correlated with poor survival of breast cancer patients, suggesting an oncogenic role of PODXL2 in breast carcinoma. In a validation experiment, knockdown of PODXL2 in BT474 cells slightly influenced cell proliferation, suppressed migration, and inhibited expressions of downstream molecules, including Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphorylated (p)-Akt (S473), and p-paxillin (Y31) proteins. In addition, knockdown of PODXL2 reduced expression levels of cancer stem cell (CSC) markers, including Oct-4 and Nanog, and the breast CSC marker aldehyde dehydrogenase 1 (ALDH1). Collectively, our present study demonstrated that PODXL2 plays a crucial role in cancer development and could serve as a potential prognostic biomarker in breast cancer patients.


Assuntos
Neoplasias da Mama/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sialoglicoproteínas/metabolismo , Neoplasias da Mama/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Biologia Computacional , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Sialoglicoproteínas/genética
16.
Infect Genet Evol ; 85: 104438, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32615317

RESUMO

Coronaviruses (CoVs) consist of six strains, and the severe acute respiratory syndrome coronavirus (SARS-CoV), newly found coronavirus (SARS-CoV-2) has rapidly spread leading to a global outbreak. The ferret (Mustela putorius furo) serves as a useful animal model for studying SARS-CoV/SARS-CoV-2 infection and developing therapeutic strategies. A holistic approach for distinguishing differences in gene signatures during disease progression is lacking. The present study discovered gene expression profiles of short-term (3 days) and long-term (14 days) ferret models after SARS-CoV/SARS-CoV-2 infection using a bioinformatics approach. Through Gene Ontology (GO) and MetaCore analyses, we found that the development of stemness signaling was related to short-term SARS-CoV/SARS-CoV-2 infection. In contrast, pathways involving extracellular matrix and immune responses were associated with long-term SARS-CoV/SARS-CoV-2 infection. Some highly expressed genes in both short- and long-term models played a crucial role in the progression of SARS-CoV/SARS-CoV-2 infection, including DPP4, BMP2, NFIA, AXIN2, DAAM1, ZNF608, ME1, MGLL, LGR4, ABHD6, and ACADM. Meanwhile, we revealed that metabolic, glucocorticoid, and reactive oxygen species-associated networks were enriched in both short- and long-term infection models. The present study showed alterations in gene expressions from short-term to long-term SARS-CoV/SARS-CoV-2 infection. The current result provides an explanation of the pathophysiology for post-infectious sequelae and potential targets for treatment.


Assuntos
COVID-19/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Pulmão/virologia , Animais , COVID-19/metabolismo , COVID-19/virologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Furões , Regulação da Expressão Gênica , Ontologia Genética , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/patogenicidade
17.
Int J Clin Exp Pathol ; 13(5): 1220-1242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509099

RESUMO

Although a previous study suggested that erythropoietin-producing hepatoma (EPH) receptors play important roles in tumor progression and the overexpression of EPHs in cancer patients is related to poor prognoses, high-throughput gene expression profiling of EPH family members in different types and subtypes of cancers has so far not been conducted. We herein carried out a series of bioinformatic analyses on expressive profiles of every EPH member across 21 different types of clinical cancers versus matched normal tissues gathered from the Oncomine platform. We validated these results by protein expression study of all EPHs family members by The Human Protein Atlas repository. Our results uncovered the overexpression of most EPH subunits in numerous cancer types, especially the dramatic overexpression of six EPHs members, namely EPHA1, EPHA2, EPHA3, EPHA4 and EPHB1, EPHB2, EPHB3, EPHB4 in bladder, colorectal, esophageal, gastric, and prostate cancers. Furthermore, EPHB2 was specifically highly expressed in cervical cancer, EPHA3 in liver cancer, and EPHB1 in uterine cancer. Collectively, expressive profiles of these EPHs were confirmed and correlated with different cancer subtypes as potential biomarkers. This study provides useful information for further studies on cancer development and clinical treatments.

18.
Diagnostics (Basel) ; 10(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316228

RESUMO

The survival rate in patients with metastatic renal cell carcinoma (RCC) is low. In addition, metastatic RCC resists traditional treatment. Therefore, identification of novel biomarkers, signaling pathways, and therapeutic targets is an important issue. The aim of the present study is to identify novel prognostic markers from the miRNA-mediated network for the regulation of metastasis of RCC. To address this issue, the RNA of human RCC cell lines, 786-O and ACHN, derived from primary and metastatic sites, respectively, were collected and subjected to RNA sequencing and small RNA sequencing. The bioinformatic analysis revealed that the pathways of the genes with different expressions were related to tumor progression, and identified miRNA and miRNA-long non-coding RNA (lncRNA) interactions, and mRNA. The results revealed that the expressions of seven miRNAs were associated with the overall survival rate of patients with RCC. Furthermore, the expressions of two lncRNA and three protein-coding genes (mRNA) were significantly associated with the increased or decreased disease-free survival rate. Although the detailed regulatory mechanism between miRNAs and targeted genes was not fully understood, our findings present novel prognostic markers and novel insight on miRNA-mediated pathways for metastatic RCC.

19.
Am J Cancer Res ; 10(1): 95-113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064155

RESUMO

Increased activity of amino acid transporters has been observed in a wide variety of cancers. However, whether amino acid metabolism is related to estrogen receptor-positive (ER+) breast cancer has been less well studied. We identified the rate-limiting enzyme involved in amino acid metabolism associated with ER+ breast cancer by integrating numerous bioinformatics tools and laboratory studies. The bioinformatics analysis revealed that highly expressed genes in ER+ breast cancer patients were correlated with breast cancer-related pathways, including ESR1 and PI3K signaling. The metabolic signaling and the amino acid metabolism were significantly regulated in breast neoplasms. We used the ER+ breast cancer cell line MCF-7 and breast cancer tissue from National Cheng Kung University Hospital to validate our findings in bioinformatics. In estradiol-treated MCF-7 cells, genes associated with anabolic metabolism of serine and methionine and genes associated with catabolic metabolism of tyrosine, phenylalanine and arginine were upregulated. Furthermore, the expression levels of ARG2, PSAT1, PSPH, TH, PAH, and MAT1A mRNA were increased in breast cancer patients relative to controls. The aforementioned genes were also found to be highly correlated with distant metastasis-free survival in breast cancer patients. High expression levels of ARG2, CBS, PHGDH, AHCY, HAL, TDO2, SHMT2, MAT1A, MAT2A, GLDC, GLS2, BCAT2, GLUD1, PAH and MTR contributed to poor prognoses, whereas high mRNA expression levels of HECA, CTH, PRODH, TAT, and MAT2B were correlated with good prognoses. FDA-approved drugs, including piperlongumine, ellipticine, etidronic acid, harmine, and meclozine, may have novel therapeutic effects in ER+ patients based on connectivity map (CMap) analyses. Collectively, our present study demonstrated that amino acid metabolism genes play crucial roles in tumor development and may serve as prospective drug targets or biomarkers for ER+ breast cancer.

20.
Mol Med Rep ; 21(2): 851-857, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31974625

RESUMO

Hexavalent chromium [Cr(VI)], is a well­known toxic form of the heavy metal chromium in the natural environment. Clinical evidence has indicated that exposure to Cr(VI) can cause severe renal damage. The production of reactive oxygen species (ROS) due to intracellular reduction of Cr(VI) is the main mechanism underlying the induction of cellular dysfunction and apoptosis. The present study aimed to investigate in detail the apoptotic pathways induced by Cr(VI)­exposure in a human immortalized proximal tubular epithelial cell line HK­2, in order to understand the mechanism involved therein. Exposure to 10 µM potassium dichromate (K2Cr2O7), a toxic compound of Cr(VI), significantly decreased cell viability after 24 and 48 h of incubation and induced intracellular ROS generation. The expression levels of markers that activate the apoptotic pathway including cleaved caspase­3 and poly (ADP­ribose) polymerase were significantly upregulated in K2Cr2O7­exposed HK­2 cells. In addition, the induction of intrinsic and extrinsic apoptotic markers was detected in K2Cr2O7­exposed HK­2 cells. In summary, the present study described for the first time the novel apoptotic mechanism of Cr(VI)­toxicity in human renal cells which may be beneficial in designing optimal clinical treatment for renal damage caused by acute Cr(VI) toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Cromo/toxicidade , Rim/patologia , Adulto , Caspases/metabolismo , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espaço Intracelular/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...