Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836767

RESUMO

Cirsium japonicum DC. var. australe Kitam. has been used as an herbal remedy and often involves using the whole plant or roots. However, the bioactivities of different parts of the plant have been far less explored. This study aimed to evaluate the antioxidative ability of methanol extracts from the flowers, leaves, stems, and roots of the Cirsium plant and their possible active components against juglone-induced oxidative stress in the nematode Caenorhabditis elegans. The results showed that the highest dry weight (12.3 g per plant) was observed in leaves, which was followed by stems (8.0 g). The methanol extract yields from the flowers, leaves, and roots were all similar (13.0-13.8%), while the yield from stems was the lowest (8.6%). The analysis of the silymarin contents in the extracts indicated that the flowers, leaves, stems, and roots contained silychristin and taxifolin; however, silydianin was only found in the leaves, stems, and roots. The flower, leaf, and stem extracts, at a concentration of 10 mg/L, significantly reduced juglone-induced oxidative stress in C. elegans, which was potentially due to the presence of silychristin and taxifolin. Overall, C. japonicum DC. var. australe Kitam. contains a significant amount of silymarin and exhibits in vivo antioxidative activity, suggesting that the prospects for the plant in terms of health supplements or as a source of silymarin are promising.


Assuntos
Cirsium , Silimarina , Animais , Caenorhabditis elegans , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Metanol , Estresse Oxidativo , Antioxidantes/farmacologia
2.
Aquat Toxicol ; 257: 106473, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871484

RESUMO

Ethinylestradiol (EE2) and sulfamethoxazole (SMX) are among pharmaceuticals and personal care products (PPCPs) and regarded as emerging contaminants in groundwater worldwide. However, the ecotoxicity and potential risk of these co-contaminants remain unknown. We investigated the effects of early-life long-term co-exposure to EE2 and SMX in groundwater on life-history traits of Caenorhabditis elegans and determined potential ecological risks in groundwater. L1 larvae of wild-type N2 C. elegans were exposed to measured concentrations of EE2 (0.001, 0.75, 5.1, 11.8 mg/L) or SMX (0.001, 1, 10, 100 mg/L) or co-exposed to EE2 (0.75 mg/L, no observed adverse effect level derived from its reproductive toxicity) and SMX (0.001, 1, 10, 100 mg/L) in groundwater. Growth and reproduction were monitored on days 0 - 6 of the exposure period. Toxicological data were analyzed using DEBtox modeling to determine the physiological modes of action (pMoAs) and the predicted no-effect concentrations (PNECs) to estimate ecological risks posed by EE2 and SMX in global groundwater. Early-life EE2 exposure significantly inhibited the growth and reproduction of C. elegans, with lowest observed adverse effect levels (LOAELs) of 11.8 and 5.1 mg/L, respectively. SMX exposure impaired the reproductive capacity of C. elegans (LOAEL = 0.001 mg/L). Co-exposure to EE2 and SMX exacerbated ecotoxicity (LOAELs of 1 mg/L SMX for growth, and 0.001 mg/L SMX for reproduction). DEBtox modeling showed that the pMoAs were increased growth and reproduction costs for EE2 and increased reproduction costs for SMX. The derived PNEC falls within the range of detected environmental levels of EE2 and SMX in groundwater worldwide. The pMoAs for EE2 and SMX combined were increased growth and reproduction costs, resulting in lower energy threshold values than single exposure. Based on global groundwater contamination data and energy threshold values, we calculated risk quotients for EE2 (0.1 - 123.0), SMX (0.2 - 91.3), and combination of EE2 and SMX (0.4 - 341.1). Our findings found that co-contamination by EE2 and SMX exacerbates toxicity and ecological risk to non-target organisms, suggesting that the ecotoxicity and ecological risk of co-contaminants of pharmaceuticals should be considered to sustainably manage groundwater and aquatic ecosystems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Sulfametoxazol/toxicidade , Caenorhabditis elegans , Etinilestradiol/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Preparações Farmacêuticas
3.
Sci Total Environ ; 875: 162404, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36868277

RESUMO

Nanoplastic contamination is an emerging environmental concern worldwide. In particular, sulfate anionic surfactants often appear along with nanosized plastic particles in personal care products, suggesting that sulfate-modified nanosized polystyrene (S-NP) may occur, remain, and spread into the environment. However, whether S-NP adversely affects learning and memory is unknown. In this study, we used a positive butanone training protocol to evaluate the effects of S-NP exposure on short-term associative memory (STAM) and long-term associative memory (LTAM) in Caenorhabditis elegans. We observed that long-term S-NP exposure impairs both STAM and LTAM in C. elegans. We also observed that mutations in the glr-1, nmr-1, acy-1, unc-43, and crh-1 genes eliminated the STAM and LTAM impairment induced by S-NP, and the mRNA levels of these genes were also decreased upon S-NP exposure. These genes encode ionotropic glutamate receptors (iGluRs), cyclic adenosine monophosphate (cAMP)/Ca2+ signaling proteins, and cAMP-response element binding protein (CREB)/CRH-1 signaling proteins. Moreover, S-NP exposure inhibited the expression of the CREB-dependent LTAM genes nid-1, ptr-15, and unc-86. Our findings provide new insights into long-term S-NP exposure and the impairment of STAM and LTAM, which involve the highly conserved iGluRs and CRH-1/CREB signaling pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sulfatos/metabolismo , Elementos de Resposta , Fatores de Transcrição/metabolismo
4.
Environ Toxicol Pharmacol ; 98: 104071, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36690191

RESUMO

Di(2-ethylhexyl) phthalate (DEHP), a widespread contaminant, has numerous adverse impacts on human health and ecosystems. Chronic DEHP exposure has been found to accelerate aging; however, its potential threat to age-dependent innate immune decline remains unknown. This study aims to evaluate the effects of chronic DEHP exposure on innate immunosenescence in Caenorhabditis elegans. We show that the length of the exposure period significantly impacts DEHP-induced age-related declines, which is linked to immunosenescence and oxidative stress. We found that the DEHP-caused immunosenescence is accompanied with downregulation of an antimicrobial gene lys-7 as well as an enhancement of the nuclear translocation of HLH-30, an orthologue of mammalian transcription factor EB (TFEB). Moreover, DEHP exposure increases the expression of riok-1, a human RIO kinase homolog, which is associated with DEHP-induced HLH-30/TFEB translocation. Our findings suggest that early-life and chronic exposure to DEHP, mostly due to parent compound rather than its metabolite mono(2-ethylhexyl) phthalate (MEHP), may weaken the innate immunity in C. elegans and may enhance susceptibility to infections or promote immunosenescence in aged populations.


Assuntos
Proteínas de Caenorhabditis elegans , Dietilexilftalato , Imunossenescência , Animais , Humanos , Idoso , Caenorhabditis elegans , Ecossistema , Imunidade Inata , Mamíferos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos
5.
Environ Pollut ; 312: 120071, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055456

RESUMO

Environmental nanoplastics (NPs) can accumulate in soils, posing a potential risk to soil ecosystems. However, the ecotoxicity of NPs for soil organisms has received little research attention. This study investigated whether NP exposure in soil leads to reproductive decline in the soil nematode Caenorhabditis elegans and sought to determine the mechanisms by which it may occur. Wild-type N2 C. elegans L1 larvae were exposed to various concentrations of nano-sized polystyrene (100 nm) in soil (0, 1, 10, 100, and 1000 mg/kg dry weight) for 96 h. We show that nano-sized polystyrene (100 nm) labeled with red fluorescence significantly accumulated in the intestine of C. elegans in a dose-dependent fashion via soil exposure (8%-47% increase). In addition, NP soil exposure led to 7%-33% decline in the number of eggs in utero and 2.6%-4.4% decline in the egg hatching percentage. We also find that the number of germ cell corpses (31%-55% increase) and the mRNA levels of germline apoptosis marker gene ced-3 (14%-31% increase) were significantly higher with greater NP soil exposure (10, 100, and 1000 mg/kg), while intracellular ATP levels were significantly reduced. Finally, the DEBtox model, which is based on the dynamic energy budget theory, was applied to show that the increased reproductive costs for C. elegans caused by NPs in soil are associated with energy depletion and reproductive decline. The threshold value (4.18 × 10-6 mg/kg) for the energy budget also highlighted the potential high reproductive risk posed by NPs in terrestrial ecosystems. Our study provides new insights into how soil organisms interact with NPs in soil ecosystems.


Assuntos
Caenorhabditis elegans , Microplásticos , Trifosfato de Adenosina , Animais , Caenorhabditis elegans/genética , Ecossistema , Aptidão Genética , Poliestirenos , RNA Mensageiro , Solo
6.
J Trop Pediatr ; 68(5)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36166753

RESUMO

BACKGROUND: Feeding practices exert a definite influence over children's experiences. This article aims to explore parental feeding practices and investigate the prediction domain of food preference from parent-child perspectives. METHODS: Two individual studies were conducted on Malay families with children aged 7-12 years. In Study 1, mothers (n = 17) participated in semi-structured focus group interviews on their knowledge of foods and feeding practices. In Study 2, parent-child pairs (n = 14) answered a 36-item, 5-point Likert scale Food Preference Questionnaire followed by virtual structured qualitative interviews. The interviews were digitally recorded, transcribed verbatim, back-translated and analysed according to the framework analysis technique. RESULTS: In Study 1, mothers perceived vegetables, chicken, fish and plain water as healthy foods and drinks while discretionary options were snacks, fast foods and carbonated drinks. The mothers defined healthy foods as foods handled safely with health benefits. They used 'healthy' cooking methods to prepare preferred foods and overtly controlled the child's access to discretionary food. In Study 2, the food groups reported by parent-child pair's report were consistent for the most preferred foods [snacks, median (interquartile range), parent: 4.5 (1.0) vs. child: 4.5 (0.0), p > 0.05] and least preferred food [legumes, parent: 2.0 (1.0) vs. child: 2.0 (1.0), p > 0.05]. Parents emphasized taste as the key determinant of food preference. CONCLUSION: These studies were the first to qualitatively explore parents' perceptions of foods affecting their feeding practices among the Malaysian community to highlight the cultural contribution. Key insights into children's food intake and factors influencing their food preferences were identified.


Assuntos
Preferências Alimentares , Poder Familiar , Dieta , Comportamento Alimentar , Humanos , Instituições Acadêmicas , Inquéritos e Questionários , Água
7.
Environ Pollut ; 307: 119574, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671892

RESUMO

The plasticizer di(2-ethylhexyl) phthalate (DEHP) is frequently detected in the environment due to the abundance of its use. These levels might be hazardous to human health and ecosystems. Phthalates have been associated with neurological disorders, yet whether chronic DEHP exposure plays a role in Parkinson's disease (PD) or its underlying mechanisms is unknown. We investigated the effects of chronic DEHP exposure less than an environmentally-relevant dose on PD hallmarks, using Caenorhabditis elegans as a model. We show that developmental stage and exposure timing influence DEHP-induced dopaminergic neuron degeneration. In addition, in response to chronic DEHP exposure at 5 mg/L, mitochondrial fragmentation became significantly elevated, reactive oxygen species (ROS) levels increased, and ATP levels decreased, suggesting that mitochondrial dysfunction occurs. Furthermore, the data show that mitochondrial complex I (nuo-1 and gas-1) and complex II (mev-1) are involved in DEHP-induced dopaminergic neuron toxicity. These results suggest that chronic exposure to DEHP at levels less than an environmentally-relevant dose causes dopaminergic neuron degeneration through mitochondrial dysfunction involving mitochondrial complex I and II. Considering the high level of genetic conservation between C. elegans and mammals, chronic DEHP exposure might elevate the risk of developing PD in humans.


Assuntos
Caenorhabditis elegans , Dietilexilftalato , Animais , Dietilexilftalato/toxicidade , Neurônios Dopaminérgicos , Ecossistema , Humanos , Mamíferos , Mitocôndrias , Ácidos Ftálicos
8.
Chemosphere ; 286(Pt 3): 131863, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34411928

RESUMO

Nanoplastic (NP) pollution is an emerging global concern due to its adverse impact on aquatic ecosystems. Nevertheless, the removal of aqueous NPs from aquatic environments remains a significant challenge. This study aims to investigate whether polystyrene NP in aqueous solutions can be removed using coffee grounds. Due to the difficulty associated with directly measuring NP levels and monitoring the biosorption process, we used fluorescent-orange amine-modified polystyrene beads (fluo-NP, 100 nm) to evaluate the efficacy of the biosorption process. The factors including pH, coffee grounds concentration, initial fluo-NP concentration, and contact time were optimized on batch experiments. In addition, the isotherm and kinetic models were employed to clarify the adsorption behaviors and mechanisms. It was found that aqueous fluo-NP particles were effectively adsorbed onto the coffee grounds over a wide pH range (pH 2-12), with a coffee ground concentration of 25 g/L leading to the maximum adsorption efficiency (74%). The equilibrium adsorption capacity of the coffee grounds was 4 mg/g for a reaction time of 40 min. Coffee grounds demonstrated the highest removal efficiency when the initial fluo-NP concentration was 100-125 mg/L. The Dubinin-Radushkevich model and pseudo-second-order model described the adsorption isotherm and kinetics well, respectively, and the adsorption at high fluo-NP concentration range was favorable. Moreover, the results suggest that the mechanism lies in the electrostatic interactions and hydrogen bonding between surface functional groups of the coffee grounds and the fluo-NP particles. Given that there is an urgent need to remove NPs from aqueous systems, this study illustrates that it is possible to use coffee ground biowaste for this purpose.


Assuntos
Café , Poluentes Químicos da Água , Adsorção , Ecossistema , Concentração de Íons de Hidrogênio , Cinética , Plásticos , Poliestirenos , Soluções , Termodinâmica , Poluentes Químicos da Água/análise
9.
Aquat Toxicol ; 239: 105958, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34509924

RESUMO

Manganese occurs naturally in sediment, yet anthropogenic sources, such as industrial wastewater and mining, increases Mn concentration. However, the environmental risk of bioavailable Mn is often overlooked and infrequently addressed. A probabilistic risk assessment was conducted to determine the effects of bioavailable Mn in river sediments on reproduction in model organism Caenorhabditis elegans using in utero egg counts and germline apoptosis as biomarkers. The lowest-observed-adverse-effect level (LOAEL) of sediment Mn that decreases in utero egg counts or increases germline apoptosis in C. elegans was 50 or 10 mg of Mn(II) per kg of dry weight sediment, respectively. Effect and exposure analyses were conducted using Hill model-simulated concentration-response curves and Mn concentrations of Laojie River sediment. Risk quotients (RQs) and exceedance risk (ER) analyses showed that bioavailable levels of Mn in Laojie River sediments from downstream sites collected during the dry season elevate reproductive risk as measured by germline apoptosis. These findings suggest that bioavailable levels of Mn in sediment exert negative impacts, and germline apoptosis is a sensitive biomarker for reproductive risk assessment. Our results also suggest that the anthropogenic Mn pollution in river sediment and spatial-seasonal bioavailability of Mn should be considered to improve sediment quality control.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Caenorhabditis elegans , Monitoramento Ambiental , Sedimentos Geológicos , Manganês/toxicidade , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/toxicidade
10.
Environ Pollut ; 285: 117233, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940230

RESUMO

Zearalenone (ZEN), a mycotoxin with endocrine disruptive activity and oxidative stress generating ability, has been a worldwide environmental concern for its prevalence and persistency. However, the long-term effect of ZEN on aging process is not fully elucidated. Thus, the present study applied the Caenorhabditis elegans model to investigate the aging-related toxic effect and possible underlying mechanisms under prolonged and chronic ZEN exposure. Our results showed that locomotive behaviors significantly decreased in ZEN (0.3, 1.25, 5, 10, 50 µM) treated C. elegans. In addition, lifespan and aging markers including pharyngeal pumping and lipofuscin were also adversely affected by ZEN (50 µM). Furthermore, ZEN (50 µM) increased ROS level and downregulated antioxidant genes resulted from inhibition of nuclear DAF-16 translocation in aged C. elegans, which was further confirmed by more significant aging-related defects observed in ZEN treated daf-16 mutant. In conclusion, our findings suggest that the aging process and aging-related decline were induced by long-term exposure of ZEN in C. elegans, which is associated with oxidative stress, inhibition of antioxidant defense, and transcription factor DAF-16/FOXO.


Assuntos
Proteínas de Caenorhabditis elegans , Zearalenona , Envelhecimento , Animais , Antioxidantes , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Estresse Oxidativo
11.
Chemosphere ; 273: 129662, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33497987

RESUMO

Cadmium (Cd) contamination in sediment is an emerging concern for the sustainability of aquatic ecosystem due to the toxicity of Cd is correlated to different trophic levels. An effective and inexpensive remediation strategy for Cd-contaminated sediment is desirable. The feasibility of using a newly isolated acidophilic sulfur-oxidizing bacterium and untreated coffee ground to remediate Cd-contaminated sediment was evaluated. The bioleaching approach was firstly conducted with the acidophilic sulfur-oxidizing bacterial SV5, resulting in Cd(II) release from Cd(II)-contaminated sediment. Subsequently, Cd(II) in the acidic leachate was further removed using untreated agricultural wastes. Untreated coffee ground exhibited about 2-fold Cd(II) removal efficiency comparing to that of rice husk and peanut shell. Scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis were conducted to characterize the coffee ground after the adsorption of 0 or 200 mg/L Cd(II). At pH 4, the optimal coffee ground concentration was 30 g/L along with 100 mg/L Cd(II) concentration. Adsorption of Cd(II) by coffee ground was rapid and the adsorption kinetic followed pseudo-second order model. Cd(II) sorption by coffee ground was a favorable process and Langmuir isotherm model well described the experimental data. Taken together, even at pH 4, coffee ground still showed good biosorption capacity for Cd(II) with short equilibrium time. This study suggests that acidophilic sulfur-oxidizing bacterial SV5 and untreated coffee ground could be used as inexpensive and environment-friendly biomaterial and agricultural waste for the remediation of Cd-contaminated sediment.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Café , Ecossistema , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Enxofre
12.
Chemosphere ; 273: 128594, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33066971

RESUMO

The widespread use of di(2-ethylhexyl) phthalate (DEHP) has resulted in its ubiquitous presence in the environment, which has led to serious health concerns. One of these concerns is its possible link to Alzheimer's disease (AD), which is the most common neurodegenerative disease in aged individuals. This study investigated whether early-life and chronic exposure to DEHP affects AD via the toxicity of amyloid-ß (Aß), which has been implicated in the pathogenesis of AD, using Caenorhabditis elegans AD models (strains CL4176 and CL2006). We show that early-life DEHP exposure increased Aß toxicity in C. elegans strains CL4176 and CL2006. Early-life and chronic exposure to DEHP also significantly increased intracellular ROS levels and Aß deposition in aged CL2006 nematodes. Moreover, it was found that DEHP-induced Aß toxicity does not require transcription factors DAF-16 or SKN-1, while early-life and chronic exposure to DEHP significantly increased the accumulation of lysosome-related organelles and the mRNA levels of the autophagy-related gene bec-1 in aged CL2006 nematodes. Our findings suggest that early-life and chronic exposure to DEHP enhances Aß toxicity, which may be associated with the autophagy-lysosomal degradation pathway in C. elegans.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Dietilexilftalato , Doenças Neurodegenerativas , Idoso , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Animais , Autofagia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dietilexilftalato/toxicidade , Humanos , Ácidos Ftálicos
13.
Ecotoxicol Environ Saf ; 203: 111001, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888585

RESUMO

Environmental nanomaterials contamination is a great concern for organisms including human. Copper oxide nanoparticles (CuO NPs) are widely used in a huge range of applications which might pose potential risk to organisms. This study investigated the in vivo transgenerational toxicity on development and reproduction with parental CuO NPs exposure in the nematode Caenorhabditis elegans. The results showed that CuO NPs (150 mg/L) significantly reduced the body length of parental C. elegans (P0). Only about 1 mg/L Cu2+ (~0.73%) were detected from 150 mg/L CuO NPs in 0.5X K-medium after 48 h. In transgenerational assays, CuO NPs (150 mg/L) parental exposure significantly induced developmental and reproductive toxicity in non-exposed C. elegans progeny (CuO NPs free) on body length (F1) and brood size (F1 and F2), respectively. In contrast, parental exposure to Cu2+ (1 mg/L) did not cause transgenerational toxicity on growth and reproduction. This suggests that the transgenerational toxicity was mostly attributed to the particulate form of CuO NPs. Moreover, qRT-PCR results showed that the mRNA levels of met-2 and spr-5 genes were significantly decreased at P0 and F1 upon only maternal exposure to CuO NPs (150 mg/L), suggesting the observed transgenerational toxicity was associated with possible epigenetic regulation in C. elegans.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Cobre/toxicidade , Epigênese Genética/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Feminino , Humanos , Exposição Materna/efeitos adversos , Reprodução/efeitos dos fármacos , Reprodução/genética
14.
Aquat Toxicol ; 227: 105604, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32846286

RESUMO

River sediment is the ultimate sink for heavy metal pollution. Copper (Cu) and zinc (Zn) are consistently found at environmentally significant levels in sediments worldwide. We hypothesized that the bioavailability and potential ecological risk of Cu and Zn in river sediments may be affected by seasonal variations and spatial distribution. In this study, we tested our hypothesis using highly industrialized river sediments (Laojie River) as an example. The concentration of heavy metals, pollution indexes, and risk indexes were evaluated and multivariate statistical analyses were performed. We found that seasonal variations affect heavy metal contamination, pollution indexes, and potential ecological risk in sediments and this effect was more severe in the dry season. In addition, higher levels of metal contamination, pollution indexes, and potential ecological risk were observed midstream and downstream of the Laojie River. We found that Cu and Zn were the primary contaminants in Laojie River sediments and may originate from common anthropogenic sources. Analysis of the chemical fractions further revealed that Cu and Zn exhibited high mobility and potential bioavailability risk. In addition, a high percentage and amount of Cu and Zn were found in exchangeable fractions, suggesting they pose a great risk to aquatic organisms. Our results indicate that seasonal variations and spatial distribution affect the bioavailability and potential ecological risk of Cu and Zn in river sediments. These findings suggest that seasonal variations and spatial distribution are important parameters to consider for environmental monitoring and environmental management in aquatic environments.


Assuntos
Cobre/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Zinco/análise , Disponibilidade Biológica , China , Poluição Ambiental/análise , Sedimentos Geológicos/química , Metais Pesados/análise , Medição de Risco , Rios/química , Estações do Ano , Poluentes Químicos da Água/toxicidade
15.
Environ Pollut ; 251: 871-878, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31234252

RESUMO

Di(2-ethylhexyl)phthalate (DEHP) is an ubiquitous and emerging contaminant that is widely present in food, agricultural crop, and the environment, posing a potential risk to human health. This study utilized the nematode Caenorhabditis elegans to decipher the toxic effects of early life exposure to DEHP on aging and its underlying mechanisms. The results showed that exposure to DEHP at 0.1 and 1.5 mg/L inhibited locomotive behaviors. In addition, DEHP exposure significantly shortened the mean lifespan of the worms and further adversely affected pharyngeal pumping rate and defecation cycle in aged worms. Moreover, DEHP exposure also further enhanced accumulation of age-related biomarkers including lipofuscin, lipid peroxidation, and intracellular reactive oxygen species in aged worms. In addition, exposure to DEHP significantly suppressed gene expression of hsp-16.1, hsp-16.49, and hsp-70 in aged worms. Further evidences showed that mutation of genes involved in insulin/IGF-1-like signaling (IIS) pathway (daf-2, age-1, pdk-1, akt-1, akt-2, and daf-16) restored lipid peroxidation accumulation upon DEHP exposure in aged worms, whereas skn-1 mutation resulted in enhanced lipid peroxidation accumulation. Therefore, IIS and SKN-1 may serve as an important molecular basis for DEHP-induced age-related declines in C. elegans. Since IIS and SKN-1 are highly conserved among species, the age-related declines caused by DEHP exposure may not be exclusive in C. elegans, leading to adverse human health consequences due to widespread and persistent DEHP contamination in the environment.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Dietilexilftalato/toxicidade , Poluentes Ambientais/toxicidade , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/efeitos dos fármacos , Plastificantes/toxicidade , Animais , Biomarcadores/metabolismo , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/biossíntese , Insulina/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipofuscina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
16.
J Tradit Complement Med ; 6(3): 281-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27419094

RESUMO

This is the first report concerning the α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B) inhibitory activities of cinnamon twig extracts. Comparing the antihyperglycemic activity of renewable plant parts, indigenous cinnamon (Cinnamomum osmophloeum; tǔ ròu guì) twig extracts (CoTE) showed better α-glucosidase and α-amylase activities than leaf, 2-cm branch and 5-cm branch extracts. Chemotype of C. osmophloeum has no influence on the antihyperglycemic activities and proanthocyanidin contents of CoTE. Among four soluble fractions obtained from CoTE by following bioactivity-guided fractionation procedure, the n-butanol soluble fraction (BSF) with abundant proanthocyanidins and condensed tannins, exhibited the best antihyperglycemic and PTP1B inhibitory activities. In addition, the BSF displayed the excellent DPPH free-radical scavenging and ferrous ion-chelating activities. The antihyperglycemic and antioxidant activities of all four soluble fractions from CoTE showed high correlation coefficient with their proanthocyanidin and condensed tannin contents. Furthermore, CoTE had no toxicity on 3T3-L1 preadiocytes. Results obtained demonstrated that CoTE has excellent antihyperglycemic, antioxidant and PTP1B inhibitory activities, and thus has great potential as a source for natural health products.

17.
PLoS One ; 11(6): e0157195, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27275864

RESUMO

BACKGROUND: Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. PRINCIPAL FINDINGS: The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, ß-amyrin and ß-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. CONCLUSIONS: This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods.


Assuntos
Antioxidantes/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Camellia/química , Fatores de Transcrição Forkhead/metabolismo , Ácido Oleico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/farmacologia , Sementes/química , Animais , Óleos de Plantas/química
18.
Nat Prod Commun ; 11(9): 1357-1362, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30807042

RESUMO

The in vitro and in vivo antioxidant activities and its potential to protect against amyloid-P toxicity of essential oils from Zelkova serrata (Thunb.) Makino were investigated in the model organism Caenorhabditis elegans. The results revealed that the essential oil of Z serrata heartwood exhibited great radical scavenging activities and high total phenolic content. In vivo assays showed significant inhibition of oxidative damage in wild-type C. elegans under juglone- indueed oxidative stress and heat shock. Based on results from both in vitro and in vivo assays, the major compound in essential oil of heartwood, (-)-(S, 4S)- 7-hydroxycalamenene (IS, 4S-7HC), may contribute significantly to the observed antioxidant activity. Further evidence showed that IS, 4S-7HC significantly delayed the paralysis phenotype in amyloid beta-expressing transgenic C. elegans. These findings suggest that IS, 4S-7HC from the essential oil of Z serrata heartwood has potential as a source for antioxidant or Alzheimer's disease treatment.


Assuntos
Peptídeos beta-Amiloides , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Sesquiterpenos/farmacologia , Ulmaceae/química , Madeira/química , Doença de Alzheimer , Animais , Animais Geneticamente Modificados , Antioxidantes/isolamento & purificação , Caenorhabditis elegans/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/isolamento & purificação , Taiwan
19.
J Agric Food Chem ; 62(44): 10701-7, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25295856

RESUMO

There is a growing interest in the exploitation of the residues generated by plants. This study explored the potential beneficial health effects from the main biowaste, tea seed pomace, produced when tea seed is processed. DPPH radical scavenging and total phenolic content assays were performed to evaluate the in vitro activities of the extracts. Caenorhabditis elegans was used as in vivo model to evaluate the beneficial health effects, including antioxidant activity, delayed aging, and reduced amyloid-ß toxicity. Among all soluble fractions obtained from the extracts of tea seed pomace from Camellia tenuifolia, the methanol (MeOH)-soluble fraction has the best in vivo antioxidant activities. The MeOH-soluble extraction was further divided into six fractions by chromatography with a Diaion HP-20 column eluted with water/MeOH, and fraction 3 showed the best in vitro and in vivo antioxidant activities. Further analysis in C. elegans showed that the MeOH extract (fraction 3) of tea seed pomace significantly decreased intracellular reactive oxygen species, prolonged C. elegans lifespan, and reduced amyloid-ß (Aß) toxicity in transgenic C. elegans expressing human Aß. Moreover, bioactivity-guided fractionation yielded two potent constituents from fraction 3 of the MeOH extract, namely, kaempferol 3-O-(2″-glucopyranosyl)-rutinoside and kaempferol 3-O-(2″-xylopyranosyl)-rutinoside, and both compounds exhibited excellent in vivo antioxidant activity. Taken together, MeOH extracts of tea seed pomace from C. tenuifolia have multiple beneficial health effects, suggesting that biowaste might be valuable to be explored for further development as nutraceutical products. Furthermore, the reuse of agricultural byproduct tea seed pomace also fulfills the environmental perspective.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Antioxidantes/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Camellia/química , Extratos Vegetais/farmacologia , Sementes/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Caenorhabditis elegans/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Expectativa de Vida , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Resíduos/análise
20.
J Agric Food Chem ; 62(26): 6159-65, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24918691

RESUMO

Cinnamomum osmophloeum Kaneh. is an indigenous tree species in Taiwan. The present study investigates phytochemical characteristics, antioxidant activities, and longevity of the essential oils from the leaves of the mixed-type C. osmophloeum tree. We demonstrate that the essential oils from leaves of mixed-type C. osmophloeum exerted in vivo antioxidant activities on Caenorhabditis elegans. In addition, minor (alloaromadendrene, 5.0%) but not major chemical components from the leaves of mixed-type C. osmophloeum have a key role against juglone-induced oxidative stress in C. elegans. Additionally, alloaromadendrene not only acts protective against oxidative stress but also prolongs the lifespan of C. elegans. Moreover, mechanistic studies show that DAF-16 is required for alloaromadendrene-mediated oxidative stress resistance and longevity in C. elegans. The results in the present study indicate that the leaves of mixed-type C. osmophloeum and essential oil alloaromadendrene have the potential for use as a source for antioxidants or treatments to delay aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacocinética , Azulenos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Cinnamomum/química , Descoberta de Drogas , Óleos Voláteis/farmacologia , Folhas de Planta/química , Sesquiterpenos/farmacologia , Animais , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Azulenos/análise , Azulenos/isolamento & purificação , Caenorhabditis elegans/crescimento & desenvolvimento , Longevidade/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos/análise , Sesquiterpenos/isolamento & purificação , Análise de Sobrevida , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...