Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589608

RESUMO

The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein, Gαs, but their response to Gßγ regulation is isoform specific. In the present study, we report cryo-electron microscope structures of ligand-free AC5 in complex with Gßγ and a dimeric form of AC5 that could be involved in its regulation. Gßγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gßγ interaction with both purified proteins and cell-based assays. Gain-of-function mutations in AC5 associated with human familial dyskinesia are located at the interface of AC5 with Gßγ and show reduced conditional activation by Gßγ, emphasizing the importance of the observed interaction for motor function in humans. We propose a molecular mechanism wherein Gßγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core. As our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.

2.
Nat Struct Mol Biol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565696

RESUMO

The conversion of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-triphosphate by phosphoinositide 3-kinase γ (PI3Kγ) is critical for neutrophil chemotaxis and cancer metastasis. PI3Kγ is activated by Gßγ heterodimers released from G protein-coupled receptors responding to extracellular signals. Here we determined cryo-electron microscopy structures of Sus scrofa PI3Kγ-human Gßγ complexes in the presence of substrates/analogs, revealing two Gßγ binding sites: one on the p110γ helical domain and another on the p101 C-terminal domain. Comparison with PI3Kγ alone reveals conformational changes in the kinase domain upon Gßγ binding that are similar to Ras·GTP-induced changes. Assays of variants perturbing the Gßγ binding sites and interdomain contacts altered by Gßγ binding suggest that Gßγ recruits the enzyme to membranes and allosterically regulates activity via both sites. Studies of zebrafish neutrophil migration align with these findings, paving the way for in-depth investigation of Gßγ-mediated activation mechanisms in this enzyme family and drug development for PI3Kγ.

3.
bioRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37214942

RESUMO

During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO, and the ensuing PKA-C binding and inactivation, are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.

4.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205329

RESUMO

The conversion of PIP2 to PIP3 by phosphoinositide 3-kinase γ (PI3Kγ) is a critical step in neutrophil chemotaxis and is essential for metastasis in many types of cancer. PI3Kγ is activated via directed interaction with Gßγ heterodimers released from cell-surface G protein-coupled receptors (GPCRs) responding to extracellular signals. To resolve how Gßγ activates PI3Kγ, we determined cryo-EM reconstructions of PI3Kγ-Gßγ complexes in the presence of various substrates/analogs, revealing two distinct Gßγ binding sites, one on the p110γ helical domain and one on the C-terminal domain of the p101 subunit. Comparison of these complexes with structures of PI3Kγ alone demonstrates conformational changes in the kinase domain upon Gßγ binding similar to those induced by Ras·GTP. Assays of variants perturbing the two Gßγ binding sites and interdomain contacts that change upon Gßγ binding suggest that Gßγ not only recruits the enzyme to membranes but also allosterically controls activity via both sites. Studies in a zebrafish model examining neutrophil migration are consistent with these results. These findings set the stage for future detailed investigation of Gßγ-mediated activation mechanisms in this enzyme family and will aid in developing drugs selective for PI3Kγ.

5.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205557

RESUMO

The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein Gαs, but their response to Gßγ regulation is isoform-specific. For example, AC5 is conditionally activated by Gßγ. Here, we report cryo-EM structures of ligand-free AC5 in complex with Gßγ and of a dimeric form of AC5 that could be involved in its regulation. Gßγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gßγ interaction with both purified proteins and cell-based assays. The interface with Gßγ involves AC5 residues that are subject to gain-of-function mutations in humans with familial dyskinesia, indicating that the observed interaction is important for motor function. A molecular mechanism wherein Gßγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core, is proposed. Because our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.

6.
Sci Adv ; 8(28): eabn8063, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857509

RESUMO

Both CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are activated by the chemokine CXCL12 yet evoke distinct cellular responses. CXCR4 is a canonical G protein-coupled receptor (GPCR), whereas ACKR3 is intrinsically biased for arrestin. The molecular basis for this difference is not understood. Here, we describe cryo-EM structures of ACKR3 in complex with CXCL12, a more potent CXCL12 variant, and a small-molecule agonist. The bound chemokines adopt an unexpected pose relative to those established for CXCR4 and observed in other receptor-chemokine complexes. Along with functional studies, these structures provide insight into the ligand-binding promiscuity of ACKR3, why it fails to couple to G proteins, and its bias toward ß-arrestin. The results lay the groundwork for understanding the physiological interplay of ACKR3 with other GPCRs.


Assuntos
Receptores CXCR4 , Transdução de Sinais , Arrestina , Ligação Proteica , Receptores CXCR4/metabolismo , beta-Arrestinas/metabolismo
7.
Biomolecules ; 11(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802765

RESUMO

G protein-coupled receptors (GPCRs), which regulate a vast number of eukaryotic processes, are desensitized by various mechanisms but, most importantly, by the GPCR kinases (GRKs). Ever since GRKs were first identified, investigators have sought to determine which structural features of GRKs are used to select for the agonist-bound states of GPCRs and how this binding event in turn enhances GRK catalytic activity. Despite a wealth of molecular information from high-resolution crystal structures of GRKs, the mechanisms driving activation have remained elusive, in part because the GRK N-terminus and active site tether region, previously proposed to serve as a receptor docking site and to be key to kinase domain closure, are often disordered or adopt inconsistent conformations. However, two recent studies have implicated other regions of GRKs as being involved in direct interactions with active GPCRs. Atomic resolution structures of GPCR-GRK complexes would help refine these models but are, so far, lacking. Here, we assess three distinct models for how GRKs recognize activated GPCRs, discuss limitations in the approaches used to generate them, and then experimentally test a hypothetical GPCR interaction site in GRK2 suggested by the two newest models.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/química , Domínios Proteicos , Receptores Adrenérgicos beta 2/química , Receptores Acoplados a Proteínas G/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Células COS , Chlorocebus aethiops , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Ligação Proteica , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Homologia de Sequência de Aminoácidos
8.
ACS Chem Neurosci ; 12(4): 581-588, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33544569

RESUMO

The ability to perform routine structure-guided drug design for selective BACE inhibitors has been limited because of the lack of robust platform for BACE2 expression, purification, and crystallization. To overcome this limitation, we developed a platform that produces 2-3 mg of pure BACE2 protein per liter of E. coli culture, and we used this protein to design macrocyclic compounds that potently and selectively inhibit BACE1 over BACE2. Compound 2 was found to potently inhibit BACE 1 (Ki = 5 nM) with a selectivity of 214-fold over BACE2. The X-ray crystal structures of unbound BACE2 (2.2 Å) and BACE2 bound to compound 3 (3.0 Å and Ki = 7 nM) were determined and compared to the X-ray structures of BACE1 revealing the S1-S3 subsite as a selectivity determinant. This platform should enable a more rapid development of new and selective BACE inhibitors for the treatment of Alzheimer's disease or type II diabetes.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Escherichia coli , Humanos
9.
Mol Pharmacol ; 97(6): 392-401, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234810

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in terminating signals initiated by agonist-bound GPCRs. However, chronic stimulation of GPCRs, such as that which occurs during heart failure, leads to the overexpression of GRKs and maladaptive downregulation of GPCRs on the cell surface. We previously reported the discovery of potent and selective families of GRK inhibitors based on either the paroxetine or GSK180736A scaffold. A new inhibitor, CCG258747, which is based on paroxetine, demonstrates increased potency against the GRK2 subfamily and favorable pharmacokinetic parameters in mice. CCG258747 and the closely related compound CCG258208 also showed high selectivity for the GRK2 subfamily in a kinome panel of 104 kinases. We developed a cell-based assay to screen the ability of CCG258747 and 10 other inhibitors with different GRK subfamily selectivities and with either the paroxetine or GSK180736A scaffold to block internalization of the µ-opioid receptor (MOR). CCG258747 showed the best efficacy in blocking MOR internalization among the compounds tested. Furthermore, we show that compounds based on paroxetine had much better cell permeability than those based on GSK180736A, which explains why GSK180736A-based inhibitors, although being potent in vitro, do not always show efficacy in cell-based assays. This study validates the paroxetine scaffold as the most effective for GRK inhibition in living cells, confirming that GRK2 predominantly drives internalization of MOR in the cell lines we tested and underscores the utility of high-resolution cell-based assays for assessment of compound efficacy. SIGNIFICANCE STATEMENT: G protein-coupled receptor kinases (GRKs) are attractive targets for developing therapeutics for heart failure. We have synthesized a new GRK2 subfamily-selective inhibitor, CCG258747, which has nanomolar potency against GRK2 and excellent selectivity over other kinases. A live-cell receptor internalization assay was used to test the ability of GRK2 inhibitors to impart efficacy on a GRK-dependent process in cells. Our data indicate that CCG258747 blocked the internalization of the µ-opioid receptor most efficaciously because it has the ability to cross cell membranes.


Assuntos
Indazóis/química , Paroxetina/química , Pirimidinas/química , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Animais , Western Blotting , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Feminino , Células HEK293 , Humanos , Indazóis/farmacologia , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Pirimidinas/farmacologia
10.
Biochemistry ; 58(44): 4424-4435, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31549827

RESUMO

BACE1 (Beta-site Amyloid Precursor Protein (APP) Cleaving Enzyme 1) is a promising therapeutic target for Alzheimer's Disease (AD). However, efficient expression, purification, and crystallization systems are not well described or detailed in the literature nor are approaches for treatment of enzyme kinetic data for potent inhibitors well described. We therefore developed a platform for expression and purification of BACE1, including protein refolding from E.coli inclusion bodies, in addition to optimizing a reproducible crystallization procedure of BACE1 bound with inhibitors. We also report a detailed approach to the proper analysis of enzyme kinetic data for compounds that exhibit either rapid-equilibrium or tight-binding mechanisms. Our methods allow for the purification of ∼15 mg of BACE1 enzyme from 1 L of culture which is higher than reported yields in the current literature. To evaluate the data analysis approach developed here, a well-known potent inhibitor and two of its derivatives were tested, analyzed, and compared. The inhibitory constants (Ki) obtained from the kinetic studies are in agreement with dissociation constants (Kd) that were also determined using isothermal titration calorimetry (ITC) experiments. The X-ray structures of these three compounds in complex with BACE1 were readily obtained and provide important insight into the structure and thermodynamics of the BACE1-inhibitor interactions.


Assuntos
Secretases da Proteína Precursora do Amiloide/isolamento & purificação , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/isolamento & purificação , Ácido Aspártico Endopeptidases/metabolismo , Compostos Macrocíclicos/química , Inibidores de Proteases/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Domínio Catalítico , Linhagem Celular Tumoral , Cristalização , Cristalografia por Raios X , Descoberta de Drogas , Ensaios Enzimáticos , Humanos , Cinética , Compostos Macrocíclicos/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Redobramento de Proteína
11.
ChemMedChem ; 14(5): 545-560, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30637955

RESUMO

Herein we present the design, synthesis, and biological evaluation of potent and highly selective ß-secretase 2 (memapsin 1, beta-site amyloid precursor protein cleaving enzyme 2, or BACE 2) inhibitors. BACE2 has been recognized as an exciting new target for type 2 diabetes. The X-ray structure of BACE1 bound to inhibitor 2 a {N3 -[(1S,2R)-1-benzyl-2-hydroxy-3-[[(1S,2S)-2-hydroxy-1-(isobutylcarbamoyl)propyl]amino]propyl]-5-[methyl(methylsulfonyl)amino]-N1 -[(1R)-1-phenylpropyl]benzene-1,3-dicarboxamide} containing a hydroxyethylamine isostere was determined. Based on this structure, a computational docking study was performed which led to inhibitor 2 a-bound BACE2 models. These were used to optimize the potency and selectivity of inhibitors. A systematic structure-activity relationship study led to the identification of determinants of the inhibitors' potency and selectivity toward the BACE2 enzyme. Inhibitors 2 d [N3 -[(1S,2R)-1-benzyl-2-hydroxy-3-[[(1S,2S)-2-hydroxy-1-(isobutylcarbamoyl)pentyl]amino]propyl]-N1 -methyl-N1 -[(1R)-1-phenylpropyl]benzene-1,3-dicarboxamide; Ki =0.031 nm, selectivity over BACE1: ≈174 000-fold] and 3 l [N1 -((2S,3R)-3-hydroxy-1-phenyl-4-((3-(trifluoromethyl)benzyl)amino)butan-2-yl)-N3 ,5-dimethyl-N3 -((R)-1-phenylethyl)isophthalamide; Ki =1.6 nm, selectivity over BACE1: >500-fold] displayed outstanding potency and selectivity. Inhibitor 3 l is nonpeptide in nature and may pave the way to the development of a new class of potent and selective BACE2 inhibitors with clinical potential.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/síntese química , Etilaminas/síntese química , Hipoglicemiantes/síntese química , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Etilaminas/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica
12.
Bioorg Med Chem Lett ; 28(15): 2605-2610, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29970308

RESUMO

We describe the design, synthesis, X-ray studies, and biological evaluation of novel BACE1 inhibitors containing bicyclic isoxazoline carboxamides as the P3 ligand in combination with methyl cysteine, methylsulfonylalanine and Boc-amino alanine as P2 ligands. Inhibitor 3a displayed a BACE1 Ki value of 10.9 nM and EC50 of 343 nM. The X-ray structure of 3a bound to the active site of BACE1 was determined at 2.85 Šresolution. The structure revealed that the major molecular interactions between BACE1 and the bicyclic tetrahydrofuranyl isoxazoline heterocycle are van der Waals in nature.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Alanina/análogos & derivados , Alanina/química , Amidas/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Compostos Bicíclicos com Pontes/síntese química , Ácidos Carboxílicos/química , Domínio Catalítico , Cristalografia por Raios X , Cisteína/análogos & derivados , Cisteína/química , Humanos , Isoxazóis/química , Estrutura Molecular , Inibidores de Proteases/síntese química
13.
Bioorg Med Chem Lett ; 27(11): 2432-2438, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28427814

RESUMO

We report the design and synthesis of a series of BACE1 inhibitors incorporating mono- and bicyclic 6-substituted 2-oxopiperazines as novel P1' and P2' ligands and isophthalamide derivative as P2-P3 ligands. Among mono-substituted 2-oxopiperazines, inhibitor 5a with N-benzyl-2-oxopiperazine and isophthalamide showed potent BACE1 inhibitory activity (Ki=2nM). Inhibitor 5g, with N-benzyl-2-oxopiperazine and substituted indole-derived P2-ligand showed a reduction in potency. The X-ray crystal structure of 5g-bound BACE1 was determined and used to design a set of disubstituted 2-oxopiperazines and bicyclic derivatives that were subsequently investigated. Inhibitor 6j with an oxazolidinone derivative showed a BACE1 inhibitory activity of 23nM and cellular EC50 of 80nM.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácidos Ftálicos/química , Piperazinas/química , Ácidos Ftálicos/síntese química , Piperazinas/síntese química , Relação Estrutura-Atividade
14.
Chem Sci ; 7: 3117-3122, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27347366

RESUMO

Design, synthesis and evaluation of very potent and selective ß-Secretase 2 (memapsin 1, BACE 2) inhibitors are described. The inhibitors were designed specifically to interact with the S2'-site of ß-secretase 2 to provide >170,000-fold selectivity over ß-secretase (BACE 1) and >15,000-fold selectivity over cathepsin D. BACE 2 is implicated in Type 2 diabetes. The studies serve as an important guide to selective BACE 2 inhibitors.

15.
Bioorg Med Chem Lett ; 25(3): 668-72, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25537272

RESUMO

We describe structure-based design, synthesis, and biological evaluation of a series of novel inhibitors bearing a pyrazole (compounds 3a-h) or a thiazole moiety (compounds 4a-e) as the P3 ligand. We have also explored Boc-ß-amino-l-alanine as a novel P2 ligand. A number of inhibitors have displayed ß-secretase inhibitory potency. Inhibitor 4c has shown potent BACE1 inhibitory activity, Ki=0.25nM, cellular EC50 of 194nM, and displayed good selectivity over BACE2. A model of 4c was created based upon the X-ray structure of 2-bound ß-secretase which revealed critical interactions in the active site.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteases/síntese química , Pirazóis/química , Tiazóis/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cinética , Ligantes , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Pirazóis/síntese química , Pirazóis/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/metabolismo
16.
Plant Cell ; 24(5): 1746-59, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22623495

RESUMO

Screening cDNA libraries for genes encoding proteins that interact with a bait protein is usually performed in yeast. However, subcellular compartmentation and protein modification may differ in yeast and plant cells, resulting in misidentification of protein partners. We used bimolecular fluorescence complementation technology to screen a plant cDNA library against a bait protein directly in plants. As proof of concept, we used the N-terminal fragment of yellow fluorescent protein- or nVenus-tagged Agrobacterium tumefaciens VirE2 and VirD2 proteins and the C-terminal extension (CTE) domain of Arabidopsis thaliana telomerase reverse transcriptase as baits to screen an Arabidopsis cDNA library encoding proteins tagged with the C-terminal fragment of yellow fluorescent protein. A library of colonies representing ~2 × 10(5) cDNAs was arrayed in 384-well plates. DNA was isolated from pools of 10 plates, individual plates, and individual rows and columns of the plates. Sequential screening of subsets of cDNAs in Arabidopsis leaf or tobacco (Nicotiana tabacum) Bright Yellow-2 protoplasts identified single cDNA clones encoding proteins that interact with either, or both, of the Agrobacterium bait proteins, or with CTE. T-DNA insertions in the genes represented by some cDNAs revealed five novel Arabidopsis proteins important for Agrobacterium-mediated plant transformation. We also used this cDNA library to confirm VirE2-interacting proteins in orchid (Phalaenopsis amabilis) flowers. Thus, this technology can be applied to several plant species.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Biblioteca Gênica , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...