Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(3): 890-900, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30406791

RESUMO

Solution-processable graphenes (represented by reduced graphene oxides, rGOs) have shown promising abilities as HTLs in perovskite solar cells (PeSCs). However, there has been no attempt to systematically tailor the characteristics of rGOs to the specifications of PeSCs. Furthermore, the applications of rGO HTLs have been limited to the spin-coating system, which is incompatible with roll-to-roll manufacturing. Here, with the aid of a polymer-graphene hybrid structure and a controllable synthesis method, we successfully developed a much more feasible rGO HTL and demonstrated highly efficient, stable, and printable p-i-n planar PeSCs with facile one-step processing. The characteristics of the developed polyacrylonitrile-grafted rGOs (PRGOs) were optimized by varying the synthesis conditions including the γ-radiation intensity (200, 400, and 600 kGy) and the concentration of the acrylonitrile (AN) precursor (2, 4, and 6 wt%). It is revealed that the PRGO synthesized with a lower AN concentration and a higher irradiation intensity (PRGO_2-600) is the most suitable one for PeSC HTL. PRGO_2-600 effectively raises the average power conversion efficiencies (PCEs) of PeSCs by ∼36% compared to those of conventional PeSCs using PEDOT:PSS HTL. The comprehensive investigations confirm that the enhanced device efficiency stems from (1) the favorable interlayer characteristics of the PRGO itself and (2) the well-crystallized perovskite layer grown on the PRGO. In addition to the PCE, thechemically inert PRGOs can also maintain their electrical properties over time and retard the decomposition of perovskite films, thereby prolonging the operation time of PeSCs in the atmosphere. More importantly, the applicability of the PRGO HTL is clearly verified even in the roll-to-roll compatible slot-die coating system, exhibiting comparable performances to those of the spin-coating system.

2.
J Bacteriol ; 200(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555704

RESUMO

The type VI secretion system (T6SS) inhibits the growth of neighboring bacterial cells through a contact-mediated mechanism. Here, we describe a detailed characterization of the protein localization dynamics in the Pseudomonas aeruginosa T6SS. It has been proposed that the type VI secretion process is driven by a conformational-change-induced contraction of the T6SS sheath. However, although the contraction of an optically resolvable TssBC sheath and the subsequent localization of ClpV are observed in Vibrio cholerae, coordinated assembly and disassembly of TssB and ClpV are observed without TssB contraction in P. aeruginosa These dynamics are inconsistent with the proposed contraction sheath model. Motivated by the phenomenon of dynamic instability, we propose a new model in which ATP hydrolysis, rather than conformational change, generates the force for secretion.IMPORTANCE The type VI secretion system (T6SS) is widely conserved among Gram-negative bacteria and is a central determinant of bacterial fitness in polymicrobial communities. The secretion system targets bacteria and secretes effectors that inhibit the growth of neighboring cells, using a contact-mediated-delivery system. Despite significant homology to the previously characterized Vibrio cholerae T6SS, our analysis reveals that effector secretion is driven by a distinct force generation mechanism in Pseudomonas aeruginosa The presence of two distinct force generation mechanisms in T6SS represents an example of the evolutionary diversification of force generation mechanisms.


Assuntos
Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Evolução Biológica , Transporte Biológico , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/genética
3.
ACS Appl Mater Interfaces ; 9(45): 39519-39525, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29058871

RESUMO

For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC71BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm2, achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

4.
Nanoscale ; 9(44): 17167-17173, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28786463

RESUMO

We demonstrate that a bi-interlayer consisting of water-free poly(3,4-ethylenedioxythiophene) (PEDOT) and fluorinated reduced graphene oxide (FrGO) noticeably enhances the efficiency and the stability of the normal-structure perovskite solar cells (PeSCs). With simple and low temperature solution-processing, the PeSC employing the PEDOT + FrGO interlayer exhibits a significantly improved power conversion efficiency (PCE) of 14.9%. Comprehensive investigations indicate that the enhanced PCE is mostly attributed to the retarded recombination in the devices. The minimized recombination phenomena are related to the interfacial dipoles at the PEDOT/FrGO interface, which facilitates the electron-blocking and the higher built-in potential in the devices. Furthermore, the PEDOT + FrGO device shows a better stability by maintaining 70% of the initial PCE over the 30 days exposure to ambient conditions. This is because the more hydrophobic graphitic sheets of the FrGO on the PEDOT further protect the perovskite films from oxygen/water penetration. Consequently, the introduction of composite interfacial layers including graphene derivatives can be an effective and versatile strategy for high-performing, stable, and cost-effective PeSCs.

5.
ACS Appl Mater Interfaces ; 9(33): 27832-27838, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28752996

RESUMO

Despite the potential of roll-to-roll processing for the fabrication of perovskite films, the realization of highly efficient and reproducible perovskite solar cells (PeSCs) through continuous coating techniques and low-temperature processing is still challenging. Here, we demonstrate that efficient and reliable CH3NH3PbI3 (MAPbI3) films fabricated by a printing process can be achieved through synergetic effects of binary processing additives, N-cyclohexyl-2-pyrrolidone (CHP) and dimethyl sulfoxide (DMSO). Notably, these perovskite films are deposited from premixed perovskite solutions for facile one-step processing under a room-temperature and ambient atmosphere. The CHP molecules result in the uniform and homogeneous perovskite films even in the one-step slot-die system, which originate from the high boiling point and low vapor pressure of CHP. Meanwhile, the DMSO molecules facilitate the growth of perovskite grains by forming intermediate states with the perovskite precursor molecules. Consequently, fully printed PeSC based on the binary additive system exhibits a high PCE of 12.56% with a high reproducibility.

6.
ACS Appl Mater Interfaces ; 9(3): 2686-2692, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28032755

RESUMO

We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

7.
ACS Appl Mater Interfaces ; 8(44): 30372-30378, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27760295

RESUMO

We report the effect of binary additives on the fabrication of polymer solar cells (PSCs) based on a bulk heterojunction (BHJ) system. The combination of 1,8-diiodooctane (DIO), a high-boiling and selective solvent, for fullerene derivatives and poly(dimethylsiloxane) (PDMS) precursor, a nonvolatile insulating additive, affords complementary functions on the effective modulation of BHJ morphology. It was found that DIO and PDMS precursor each play different roles in the control of BHJ morphology, and thus, the power conversion efficiency (PCE) can be further enhanced to 7.6% by improving the fill factor (FF) from 6.8% compared to that achieved using a conventional device employing only a DIO additive. In the BHJ of the active layer, DIO suppressed the large phase separation of PBDTTT-CF and PC71BM while allowing the formation of continuous polymer networks in the donor polymer through phase separation of the PDMS precursor and BHJ components. The appropriate amount of PDMS precursor does not disturb charge transport in the BHJ despite having insulating properties. In addition, the dependence of photovoltaic parameters on different light intensities reveals that the charge recombination in the device with DIO and PDMS precursor decreases compared to that achieved using the device with only DIO.

8.
ACS Appl Mater Interfaces ; 8(20): 12822-9, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27160866

RESUMO

The highly efficient CH3NH3PbI3 perovskite solar cell (PeSC) is simply achieved by employing a blended electron-transport layer (ETL) consisting of PC61BM and P(NDI2OD-T2). The high molecular weight of P(NDI2OD-T2) allows for a thinned ETL with a uniform morphology that optimizes the PC61BM ETL more effectively. As a result of this enhancement, the power conversion efficiency of a PC61BM:P(NDI2OD-T2)-based PeSC is 25% greater than that of the conventional PC61BM based-PeSC; additionally, the incorporation of P(NDI2OD-T2) into PC61BM attenuates the dependence of the PeSC on the ETL-processing conditions regarding its performance. It is revealed that, in addition to the desirable n-type semiconducting characteristics of PC61BM:P(NDI2OD-T2)-including a higher electron-mobility and a more-effective electron selectivity of a blended ETL for an efficient electron extraction-the superior performance of a PC61BM:P(NDI2OD-T2) device is the result of a thinned and uniformly covered ETL on the perovskite layer.

9.
ACS Appl Mater Interfaces ; 7(45): 25032-8, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26488072

RESUMO

We demonstrate that an easily accessible polyacrylonitrile (PAN) polymer can efficiently function as a novel solution-processable anode interfacial layer (AIL) to boost the device performances of polymer:fullerene-based solar cells (PSCs). The PAN thin film was simply prepared with spin-coating of a cost-efficient PAN solution dissolved in dimethylformamide on indium tin oxide (ITO), and the thin polymeric interlayer on PSC parameters and stability were systemically investigated. As a result, the cell efficiency of the PSC with PAN was remarkably enhanced compared to the device using bare ITO. Furthermore, with PAN, we finally achieved an excellent power conversion efficiency (PCE) of 6.7% and a very high PSC stability in PTB7:PC71BM systems, which constitute a highly comparable PCE and superior device lifetime relative to those of conventional PSCs with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS). These results demonstrate that the inexpensive solution-processed PAN polymer can be an attractive PEDOT: PSS alternative and is more powerful for achieving better cell performances and lower cost PSC production.

10.
Sci Rep ; 4: 6953, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25377945

RESUMO

Perovskite solar cells (PeSCs) have been considered one of the competitive next generation power sources. To date, light-to-electric conversion efficiencies have rapidly increased to over 10%, and further improvements are expected. However, the poor device reproducibility of PeSCs ascribed to their inhomogeneously covered film morphology has hindered their practical application. Here, we demonstrate high-performance PeSCs with superior reproducibility by introducing small amounts of N-cyclohexyl-2-pyrrolidone (CHP) as a morphology controller into N,N-dimethylformamide (DMF). As a result, highly homogeneous film morphology, similar to that achieved by vacuum-deposition methods, as well as a high PCE of 10% and an extremely small performance deviation within 0.14% were achieved. This study represents a method for realizing efficient and reproducible planar heterojunction (PHJ) PeSCs through morphology control, taking a major step forward in the low-cost and rapid production of PeSCs by solving one of the biggest problems of PHJ perovskite photovoltaic technology through a facile method.

11.
ACS Appl Mater Interfaces ; 6(22): 19613-20, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25343490

RESUMO

The interfacial properties of PEDOT:PSS, pristine r-GO, and r-GO with sulfonic acid (SR-GO) in organic photovoltaic are investigated to elucidate electron-blocking property of PEDOT:PSS anode interfacial layer (AIL), and to explore the possibility of r-GO as electron-blocking layers. The SR-GO results in an optimized power conversion efficiency of 7.54% for PTB7-th:PC71BM and 5.64% for P3HT:IC61BA systems. By combining analyses of capacitance-voltage and photovoltaic-parameters dependence on light intensity, it is found that recombination process at SR-GO/active film is minimized. In contrast, the devices using r-GO without sulfonic acid show trap-assisted recombination. The enhanced electron-blocking properties in PEDOT:PSS and SR-GO AILs can be attributed to surface dipoles at AIL/acceptor. Thus, for electron-blocking, the AIL/acceptor interface should be importantly considered in OPVs. Also, by simply introducing sulfonic acid unit on r-GO, excellent contact selectivity can be realized in OPVs.

12.
Nanotechnology ; 23(34): 344013, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22885537

RESUMO

Flexible organic solar cells (OSCs) composed of blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were fabricated and investigated with chemically doped multilayer graphene films as transparent and conducting electrodes on plastic substrates. The sheet resistance of the chemically doped graphene film was reduced to half of its original value, resulting in a significant performance enhancement of OSCs featuring doped graphene electrodes. Moreover, there was no substantial variation observed in the fill factor and power conversion efficiency values of the flexible OSCs under bending conditions. A power conversion efficiency of ~2.5% for flexible OSCs with doped graphene electrodes was observed under bending conditions, even up to a 5.2 mm bending radius.

13.
ACS Appl Mater Interfaces ; 4(5): 2551-60, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22489686

RESUMO

In the present study, a novel polar-solvent vapor annealing (PSVA) was used to induce a significant structural rearrangement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films in order to improve their electrical conductivity and work function. The effects of polar-solvent vapor annealing on PEDOT:PSS were systematically compared with those of a conventional solvent additive method (SAM) and investigated in detail by analyzing the changes in conductivity, morphology, top and bottom surface composition, conformational PEDOT chains, and work function. The results confirmed that PSVA induces significant phase separation between excess PSS and PEDOT chains and a spontaneous formation of a highly enriched PSS layer on the top surface of the PEDOT:PSS polymer blend, which in turn leads to better 3-dimensional connections between the conducting PEDOT chains and higher work function. The resultant PSVA-treated PEDOT:PSS anode films exhibited a significantly enhanced conductivity of up to 1057 S cm(-1) and a tunable high work function of up to 5.35 eV. The PSVA-treated PEDOT:PSS films were employed as transparent anodes in polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs). The cell performances of organic optoelectronic devices with the PSVA-treated PEDOT:PSS anodes were further improved due to the significant vertical phase separation and the self-organized PSS top surface in PSVA-treated PEDOT:PSS films, which can increase the anode conductivity and work function and allow the direct formation of a functional buffer layer between the active layer and the polymeric electrode. The results of the present study will allow better use and understanding of polymeric-blend materials and will further advance the realization of high-performance indium tin oxide (ITO)-free organic electronics.


Assuntos
Gases/química , Poliestirenos/química , Solventes/química , Tiofenos/química , Compostos de Estanho/química , Condutividade Elétrica , Eletrodos , Transição de Fase , Energia Solar
15.
Macromol Rapid Commun ; 32(19): 1551-6, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21786361

RESUMO

A novel donor-acceptor-type polymer with a low band-gap that alternates electron-rich thienylenevinylene groups with electron-deficient diketopyrrolopyrrole (DPP) units (PETVTDPP) has been synthesized by Pd-catalyzed Stille cross-coupling polymerization. The polymer shows a broad absorption band of wavelengths that range from 330 to 900 nm, and a low band-gap value of 1.43 eV. The field-effect mobility of an organic thin-film transistor based on this polymer is 0.05 cm(2 ) · Vs(-1) . Bulk-heterojunction solar cells using a mixture of PETVTDPP and PC[71] BM for the active layer show a power conversion efficiency (PCE) of 1.94% under simulated AM 1.5 G solar irradiation at 100 mW · cm(-2) .


Assuntos
Cetonas/química , Luz , Polímeros/química , Polímeros/síntese química , Pirróis/química , Energia Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA