Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 463: 164-72, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26520823

RESUMO

A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses.


Assuntos
Canavalia/enzimologia , Enzimas Imobilizadas/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Polímeros/metabolismo , Urease/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Polímeros/química , Temperatura , Urease/química
2.
J Colloid Interface Sci ; 443: 137-42, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25544320

RESUMO

Here we report simple and robust one-pot method for the preparation of polystyrene (PS)/graphene oxide (GO) nanocomposite using reversible addition fragmentation chain transfer (RAFT) modified GO in surfactant free emulsion polymerization (SFEP). The results suggested that ionic comonomer, styrene sulfonate sodium salt (SS-Na), concentration plays vital role in forming PS/GO nanocomposite. X-ray and electron diffraction studies suggest that there is no recombination of GO sheets when moderate SS-Na concentration is used, resulting complete exfoliation of GO sheets in the PS/GO nanocomposite. The formation of core-shell particles in which PS is the core and polystyrene sulfonate sodium salt (PSS-Na) is the shell, and the specific interactions between functional groups of GO and PSS-Na are attributed as the driving forces for the PS/GO nanocomposite formation.

3.
J Colloid Interface Sci ; 354(2): 506-10, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21145064

RESUMO

Novel approach for the synthesis of core-shell polystyrene nanoparticles by living hydrophilic polymer consisting of thiocarbonyl thio end group is reported. The surfactant free emulsion polymerization of styrene in the presence of macro-RAFT (reversible addition fragmentation chain transfer) agent is carried out to synthesize stable latex particles with smaller particle size. A macro-RAFT agent is prepared by homopolymerization of sodium styrene sulfonate (NaSS) in aqueous phase by using dithioester as chain transfer agent. This synthesized polystyrene sulfonate-sodium (PSS-Na) based macro-RAFT agent, which is essentially water soluble macromolecular chain transfer agent used for the surfactant-free batch emulsion polymerization of styrene. Transmission electron microscopy (TEM) study of the synthesized colloids shows the narrow particle size distribution with core-shell morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...